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Abstract

As the I�O needs of parallel scienti�c applications increase�
�le systems for multiprocessors are being designed to provide
applications with parallel access to multiple disks� Many
parallel �le systems present applications with a conventional
Unix�like interface that allows the application to access mul�
tiple disks transparently� This interface conceals the paral�
lelism within the �le system� which increases the ease of
programmability� but makes it di�cult or impossible for
sophisticated programmers and libraries to use knowledge
about their I�O needs to exploit that parallelism� Further�
more� most current parallel �le systems are optimized for a
di�erent workload than they are being asked to support� We
introduce Galley� a new parallel �le system that is intended
to e�ciently support realistic parallel workloads� Initial ex�
periments� reported in this paper� indicate that Galley is
capable of providing high�performance I�O to applications
that access data in patterns that have been observed to be
common�

� Introduction

Multiprocessors have been steadily increasing in computa�
tional performance� but the power of the I�O subsystem has
not kept pace� This disparity is partly due to the physical
limitations of storage hardware� but a more signi�cant rea�
son for this performance gap is the limitations of current par�
allel �le systems� Most modern parallel �le systems were de�
signed around several key assumptions about how scienti�c
applications would use such systems� Several recent analy�
ses of �le�system workloads on production multiprocessors
running primarily scienti�c applications show that many of
these assumptions are incorrect �KN�	� PEK��
� NKP��
��
Speci�cally� it was commonly believed that parallel� scien�
ti�c applications would have behavior similar to that of ex�
isting sequential and vector scienti�c applications �Pie���
PFDJ��� LIN��
�� These applications tend to access large
�les in large� consecutive chunks �MK��� PP�
�� Studies of
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two parallel �le�system workloads� supporting many users
and running a variety of applications in a variety of scien�
ti�c domains� under both data�parallel and control�parallel
programming models� show that many parallel� scienti�c ap�
plications make many small� non�consecutive requests to the
�le system �KN�	� PEK��
� NKP��
� NK�
�� These stud�
ies suggest that most parallel �le systems have been opti�
mized for a workload that is di�erent than that which actu�
ally exists�

Using the results from these workload studies and from
performance evaluations of existing parallel �le systems� we
have developed a new parallel �le system that is able to
deliver high performance to a variety of applications� such
as those observed in actual workloads�

The remainder of this paper is organized as follows� In
Section � we describe existing parallel �le systems� how they
are used in practice� and how they fail to meet the needs of
the applications that rely on them� In Section 
 we describe
a new way of structuring �les and the interface that is used
to access those �les� Section 	 examines the performance
of Galley� In Section 
 we discuss some related work� and
�nally� in Section �� we conclude and describe our future
plans�

� Background

��� Parallel File Systems

Most existing multiprocessor �le systems are based on the
conventional Unix�like �le�system interface in which �les are
seen as an addressable� linear stream of bytes �BGST�
�
Pie��� LIN��
� WMR��	�� To provide higher throughput�
the �le system typically declusters �les �i�e�� scatters the
blocks of each �le across multiple disks�� thus allowing par�
allel access to the �le� reducing the e�ect of the bottleneck
imposed by the relatively slow disk speed� Although the
�le is actually scattered across many disks� the underlying
parallel structure of the �le is hidden from the application
by the higher�level abstraction� The interface is limited to
such operations as open��� close��� read��� write��� and
seek��� all of which manipulate an implicit �le pointer�

One enhancement to the conventional interface� which is
o�ered by several multiprocessor �le systems� is a �le pointer
that is shared among the processes in an application and
provides a mechanism for regulating access to a shared �le
by those processes �Pie��� BGST�
�� The simplest shared
�le pointer is one which supports an atomic�append mode
�as in �LMKQ���� page ��	�� Most parallel �le systems pro�
vide this mode in addition to several more structured access
modes �e�g�� round�robin access to the �le pointer��



We compare Galley to other� more sophisticated� parallel
�le systems in Section 
�

��� Workload Characterization

Experience has shown that the simple� Unix�like model of a
�le is well suited to uniprocessor applications that tend to
access �les in a simple� sequential fashion �OCH��
�� It has
similarly proven to be appropriate for scienti�c� vector ap�
plications that also tend to access �les sequentially �MK����
Until recently� however� there had been no investigation into
whether this �le model and interface were well suited to mas�
sively parallel scienti�c applications�

To determine whether this model was appropriate� we ex�
amined the �le�system workloads on two di�erent massively
parallel processors� running two di�erent application work�
loads �KN�	� PEK��
�� These studies show that sequential
access to consecutive portions of a �le is much less com�
mon in a multiprocessor environment than in uniprocessor
or supercomputer environments� In �NK�
� NKP��
�� we
looked more closely at the speci�c patterns in which appli�
cations accessed the �les in a parallel �le system� We found
that these applications frequently accessed �les in regular�
repeating patterns� For example� the most common pattern
was a series of requests� all of the same size� separated by a
common stride within the �le� This pattern is likely to arise
if� for example� a two�dimensional matrix is stored on disk in
row�major order� and an application distributes the columns
of the matrix across its processes in a CYCLIC fashion �us�
ing High Performance Fortran terminology �HPF�
���

In addition to assuming that parallel scienti�c applica�
tions would access �les consecutively� most parallel �le sys�
tem implementations assume that these �les would be ac�
cessed in large chunks � hundreds of kilobytes or megabytes
at a time� Our workload characterization studies show that
while some parallel scienti�c applications do issue a rela�
tively small number of large requests� there are many ap�
plications that issue thousands or millions of small �� ���
bytes� requests� putting a great deal of stress on current �le
systems�

While the standard Unix�like interface has worked well
in the past� it seems clear that it is not well suited to parallel
applications� which have more complicated access patterns
than uniprocessor and supercomputer applications� Fur�
thermore� the tracing study described in �KN�	� found that
shared �le pointers were rarely used in practice and suggests
that poor performance and a failure to match the needs of
applications are the likely causes� This �nding indicates that
the simple extensions o�ered by most of today�s parallel �le
systems are not a su�cient adaptation of this interface�

� File Structure

While most existing multiprocessor �le systems are based on
the linear �le model� the underlying parallel structure of the
�le is hidden from the application� Galley uses a more com�
plex �le model that should lead to greater �exibility and
performance� In addition to providing high performance�
Galley was designed to be �library friendly�� giving program�
mers the capability to easily layer abstractions above the �le
system� We summarize the model here� full details of this
structure may be found in �NK����
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Figure �� Three dimensional structure of �les in the Galley
File System� The portion of the �le residing on IOP � is
shown in greater detail than the portions on the other two
IOPs�

��� Sub�les

The linear model can allow good performance when the re�
quest size generated by the application is larger than the
declustering�unit size� as multiple disks are being used in
parallel for each request� The declustering�unit size is fre�
quently measured in kilobytes �e�g�� 	KB in Intel�s CFS
�Pie����� however� while our workload characterization stud�
ies show that the typical request size in a parallel application
is much smaller� frequently under ��� bytes� This dispar�
ity means that most of the individual requests generated by
parallel applications are not being executed in parallel� An�
other problem with the linear �le model is that a dataset
may have a natural� parallel mapping onto multiple disks
that is not easily captured by the standard cyclic block�
declustering schemes� One such example may be seen in
the Flexible Image Transport System �FITS� data format�
which is used for astronomical data �NAS�	�� A FITS �le
is organized as a series of records� each of which contains a
key with multiple �elds and one or more data elements� It
is not clear that blindly striping these records across mul�
tiple disks is the optimal approach in a parallel �le system�
Rather� one could distribute the data across the disks using
the keys and knowledge about how the dataset will be used
to determine a partitioning scheme that results in highly
parallel access� Finally� the parallel�I�O algorithms commu�
nity has frequently argued for this kind of increased control
over declustering �CK�
� WGRW�
��

To address these problems� Galley allows applications to
fully control the way in which data is declustered across
the IOPs� as well as which IOP they wish to access in each
request� To allow this behavior� �les are composed of one or
more sub�les� each of which resides entirely on a single IOP�
and which may be directly addressed by the application�

��� Forks

Each sub�le in Galley is structured as a collection of one or
more independent forks� each of which is a linear� address�
able collection of bytes� similar to a traditional Unix �le�
This three�dimensional �le structure is illustrated in Fig�
ure �� Note that there is no requirement that all sub�les
have the same number of forks� or that all forks have the
same size�



The use of forks allows further application�de�ned struc�
turing� This structuring may include storing distinct types
of data in separate forks �e�g�� a list of pressures in one fork
and a list of temperatures in another�� or it may involve stor�
ing metadata in one fork and �real� data in another �e�g��
a compression library similar to that described in �SW�
�
could store compressed data chunks in one fork and direc�
tory information in another��

An example of using forks for both data and metadata
may be found in data �les like those described in �KFG�	��
The style of FITS �le described in this study contained
records with � keys� describing the frequency domain� the
antenna� and the time the data was collected� The data
portion of each record contained a pair of data elements�
one for each of two polarizations� and each data element
contains �oating�point triples for each of 
� frequencies� Al�
though most queries to the data only involved one of the two
polarizations� the two sets of data were stored together in a
single �le to reduce the total amount of diskspace �by not
replicating the key information�� Unfortunately� this meant
that an application generally read all the data for each po�
larization when it was only interested in one set� Using the
Galley �le system� a programmer could choose to store the
keys in one fork� the data for one polarization in a second
fork� and the data for the other polarization in a third fork�
In addition to reducing the amount of data we need to read
when we are only interested in one of the two sets of data�
by isolating the keys in their own fork we reduce the amount
of data we need to read when scanning for a given key pair�
Unlike segmenting a traditional �le into three regions� the
fork�based structure allows each fork to grow as more records
are added�

A further discussion of the applications and bene�ts of
this structure can be found in �NK����

��� Data Access Interface

The standard Unix interface provides only simple primi�
tives for accessing the data in �les� These primitives are
limited to read��ing and write��ing consecutive regions of
a �le� As discussed above� recent studies show that these
primitives do not match the needs of many parallel applica�
tions �NK�
� NKP��
�� Speci�cally� parallel scienti�c appli�
cations frequently make many small requests to a �le� with
strided access patterns�

We de�ne two types of strided patterns� A simple�strided
access pattern is one in which all the requests are the same
size� and there is a constant distance between the begin�
ning of one request and the beginning of the next� A group
of requests that form a strided access pattern is called a
strided segment� A nested�strided access pattern is similar to
a simple�strided pattern� but rather than repeating a single
request at regular intervals� the application repeats a strided
segment at regular intervals� Studies show that both simple�
and nested�strided patterns are common in parallel� scien�
ti�c applications �NK�
� NKP��
�� Indeed� in one study�
over ��� of the requests in the entire workload were part of
one of these two patterns�

Galley provides three interfaces that allow applications
to explicitly make regular� structured requests such as those
described above� as well as one interface for unstructured
requests� These interfaces allow us to combine many small
requests into a single� larger request� which can lead to im�
proved performance in two ways� First� reducing the number
of requests can lower the aggregate latency costs� particu�

larly for those applications that issue thousands or millions
of tiny requests� Second� recent work has shown that pro�
viding a �le system with more information about an applica�
tion�s access patterns can lead to tremendous performance
improvements by introducing opportunities for intelligent
scheduling of I�O and communication �Kot�	��

The higher�level interfaces o�ered by Galley are summa�
rized below� These interfaces are described in greater detail�
and examples are provided� in �NK��� NK�
��

����� Simple�strided Requests

gfs�read�strided�int fid� void �buf� ulong offset�
ulong rec�size� int f�stride�
int m�stride� int quant�

Beginning at offset� the �le system will read quant
records of rec size bytes� where the o�set of each record
is f stride bytes greater than that of the previous record�
The records are stored in memory beginning at buf� The
o�set into the bu�er is changed by m stride bytes after
each record is transferred� Note that either the �le stride
�f stride� or the memory stride �m stride� may be nega�
tive� The call returns the number of bytes transferred�

When m stride is equal to rec size� data will be gath�
ered from disk� and stored contiguously in memory� When
f stride is equal to rec size� data will be read from a con�
tiguous region of a �le� and scattered in memory� It is also
possible for both m stride and f stride to be di�erent than
rec size� and possibly each other�

Naturally� there is a corresponding gfs write strided��
call�

����� Nested�strided Requests

gfs�read�nested�int fid� void �buf� ulong offset�
ulong rec�size� struct stride �vec�
int levels�

The vec is a pointer to an array of �f stride� m stride�
quantity� triples listed from the innermost level of nesting
to the outermost� The number of levels of nesting is indi�
cated by levels�

����� Nested�batched Requests

While we found that most of the small requests in the ob�
served workloads were part of strided patterns� there may
well be applications that could bene�t from some form of
high�level� regular request� but would �nd the nested�strided
interface too restrictive� For those applications� we provide
a nested�batched interface� The nested�batched interface al�
lows applications to make an arbitrary series of requests�
which may then be repeated at regular intervals� This in�
terface is nested in that any of the requests in the arbitrary
series may themselves be a batched request� To conserve
space� we do not present the details here �see �NK��� NK�
���

����� List Requests

Finally� in addition to these structured operations� Galley
provides a more general �le interface� called the list inter�
face� which is similar to the POSIX lio listio�� inter�
face �IBM�	�� This interface simply takes an array of ��le
o�set� memory o�set� size� triples from the application� This
interface is useful for applications with access patterns that



do not have any inherently regular structure� While this in�
terface essentially functions as a series of simple reads and
writes� it provides the �le system with enough information
to make intelligent disk�scheduling decisions� as well as the
ability to coalesce many small pieces of data into larger mes�
sages for transferring between CPs and IOPs�

� Performance

Performance studies of parallel �le systems tend to focus on
the performance of large� sequential requests� Indeed� most
do not even examine the performance of requests of fewer
than many kilobytes �Nit��� BBH�
� KR�	�� As discussed
above� recent workload characterizations show that parallel
�le systems are frequently called upon to service many small
requests� This disparity means that most performance stud�
ies actually fail to examine how a �le system can be expected
to perform when running real applications in a production
environment�

��� Experimental Platform

The Galley File System was designed to be portable across
workstation clusters and massively parallel processors� The
results in this paper were obtained on the IBM SP�� at
NASA Ames� Numerical Aerodynamic Simulation facility�
This system has ��� nodes� each running AIX 
���
� but no
more than �	� are available for general use� Each node has
a ���� MhZ POWER� processor� at least ��� megabytes
of memory� and is connected to IBM�s high�performance
switch� While the switch allows throughput of up to 
	 MB�s
using one of IBM�s message�passing libraries �PVMe� MPL�
or MPI�� those libraries cannot operate in a multithreaded
environment� Furthermore� neither MPL nor MPI allow ap�
plications to be implemented as persistent servers and tran�
sient clients� As a result of these limitations� Galley is im�
plemented on top of TCP�IP� with a maximum throughput
of approximately �� MB�s on the SP���

Each IOP in Galley controls a single disk� which it log�
ically partitions into 
�K blocks� Each IOP also main�
tains a cache of the most recently used blocks from the
disk it controls� For this study� the size of each cache was

	 megabytes� large enough to hold ���� blocks� Galley does
not attempt to prefetch data for two reasons� First� indis�
criminate prefetching can cause the cache to thrash �Nit����
Second� prefetching is based on the assumption that the
system can intelligently guess what an application is going
to request next� Using the higher�level requests described
above� there is frequently no need for Galley to make guesses
about an application�s behavior� the application is able to
explicitly provide that information to each IOP�

Although each node on the SP�� has a local disk� access
to that disk must be performed through AIX�s Journaling
File System� While Galley was originally implemented to
use these disks� we felt that our performance results were
being in�ated by the prefetching and caching provided by
JFS� Speci�cally� we frequently measured apparent through�
puts of over �� MB�s from a single disk� Accordingly� the
performance results presented here were obtained through
the use of a simulation of an HP ��
�� SCSI hard disk�
which has an average seek time of �
�
 ms and a maximum
sustained throughput of ��� MB�s �HP���� Each IOP pro�
vides access to one simulated disk�

Our implementation of the disk model was based on ear�
lier implementations �RW�	� KTR�	�� Among the factors
simulated by our model are head�switch time� track�switch
time� SCSI�bus overhead� controller overhead� rotational la�
tency� and the disk cache� To validate our model� we used
a trace�driven simulation� using data provided by Hewlett�
Packard and used by Ruemmler and Wilkes in their study��

Comparing the results of this trace�driven simulation with
the measured results from the actual disk� we obtained a
demerit �gure �see �RW�	� for a discussion of this measure�
of 
���� indicating that our model was extremely accurate�

The simulated disk is integrated into Galley by creating
a new thread on each IOP to execute the simulation� When
the thread receives a disk request� it calculates the time
required to complete the request� and then suspends itself
for that length of time� While� in most cases� the disk thread
does not actually load or store the requested data� metadata
blocks must be preserved� To avoid losing that data� the
disk thread maintains a small cache� which is used to store
�important� data� When the simulation thread copies data
to or from its cache� the amount of time required to complete
the copy is deducted from the amount of time the thread is
suspended� It should be noted that the remainder of the
Galley code is unaware that it is accessing a simulated disk�

��� Access Patterns

We examine the performance of Galley under several di�er�
ent access patterns� each of which is composed of a series of
requests for �xed�size pieces of data� or records� The pat�
terns we examine are shown in Figure �� While these pat�
terns do not directly correspond to a particular �real world�
application� they are representative of the general patterns
we observed to be most common in production multipro�
cessor systems� Our analysis is done with a single �le that
contains a single sub�le �each with a single fork� on each
IOP� and the patterns shown in Figure � re�ect the pat�
terns that we access from each IOP� The correspondence
between the IOP�level access patterns we use in this study�
and the �le�level patterns observed in actual applications� is
discussed for each pattern below�

The simplest access pattern we call broadcast� With this
access pattern every compute node reads the whole �le �i�e��
the IOPs broadcast the whole �le to all the CPs�� This ac�
cess pattern models the series of requests we would expect
to see when all the nodes in an application read a shared
�le� such as a con�guration �le or the initial state for a sim�
ulation� Since an application that wants to access all the
data in a �le must access all the data in every sub�le� a
broadcast pattern at the �le level clearly corresponds to a
broadcast pattern at each sub�le� Although it seems coun�
terintuitive for an application to access large� contiguous
regions of a �le in small chunks� such behavior does occur
in practice� One likely reason that data would be accessed
in this fashion is that records stored contiguously on disk
are to be stored non�contiguously in memory� In the sim�
plest case� this pattern would be similar to the interleaved
pattern described below� with the interleaving occurring in
memory rather than on disk� Since it seems unlikely that an
application would want every node to write to the entire �le�
we did not measure the performance of the broadcast�write
case�

�Kindly provided to us by John Wilkes and HP� Contact John
Wilkes at wilkes�hplabs�hp�com for information about obtaining the
traces�



(a) Broadcast (b) Partitioned

(c) Interleaved

Figure �� The three access patterns examined in this study� Each pattern is displayed with two types of view� the pattern

as applied to a linear �le� and matrix distributions that could give rise to the pattern� We assume that the matrices are

stored in row�major order� Each block corresponds to a single record in the �le� and the highlighted blocks represent the

records accessed by a single compute node in a group of four�

The next access pattern we refer to as partitioned� With
this pattern� each compute node accesses a distinct� contigu�
ous region of each �le� This pattern could represent either
a one�dimensional partitioning of data or the series of ac�
cesses we would expect to see if a two�dimensional matrix
were stored on disk in row�major order� and the application
distributed the rows of the matrix across the compute nodes
in a BLOCK fashion �using HPF terminology �HPF�
��� A
partitioned access pattern at the �le level can map onto two
di�erent access patterns at the IOP level� The �rst pattern
arises if the �le is distributed across the disks in a BLOCK
fashion� that is the �rst ��n of the �le bytes in the �le are
mapped onto the �rst of the n IOPs� and so forth� For each
IOP� this mapping results in an access pattern similar to
a broadcast pattern with � compute processor� The other�
more interesting� mapping distributes blocks of data across
the disks in a CYCLIC fashion� as in most implementations
of a linear �le model� This distribution results in accesses
by each CP to each IOP� In a system with 	 CPs� the �rst
CP would access the �rst ��	 of the data in each sub�le�
and so forth� Thus a partitioned pattern at the �le level
leads to a partitioned pattern at each IOP� As with the
broadcast pattern� applications may access data in this pat�
tern using a small record size if the the data is to be stored
non�contiguously in memory�

The �nal access pattern is an interleaved pattern� In this
pattern� each compute node requests a series of noncontigu�
ous� but regularly spaced� records from a �le� For our test�
ing� the interleaving was based on the record size� That is�
if �� compute nodes were reading a �le with a record size
of 
�� bytes� each node would read 
�� bytes and then skip
ahead ���� ����
��� bytes before reading the next chunk of

data� This pattern models the accesses generated by an ap�
plication that distributes the columns of a two�dimensional
matrix across the processors in an application� in a CYCLIC
fashion� if the matrix is stored in a linear �le in row�major or�
der� Assume the linear �le is distributed traditionally� with
blocks distributed across the sub�les in a CYCLIC fashion�
In the simplest case� the block size might be evenly divisible
by the product of the record size and the number of CPs� In
this case� every block in the �le is accessed with the same in�
terleaved pattern� and any rearrangement of the blocks �be�
tween or within disks� will result in the same sub�le�access
pattern� Thus� the blocks can be declustered across the sub�
�les� but the access pattern within each sub�le will still be
interleaved� There are� of course� more complex mappings
of an interleaved �le�level pattern to an IOP�level pattern�
but we focus on the simplest case�

For each test� we held the number of compute proces�
sors constant at ��� and varied the number of IOPs �each
with one disk� from 	 to �	� Thus� the CP�IOP ratio var�
ied from ��	 to 	��� Each test began with an empty bu�er
cache on each IOP� and each write test included the time re�
quired for all the data to actually be written to disk� Each
fork was laid out contiguously on disk� allowing us to better
understand how each access pattern a�ects the system�s per�
formance� While the size of each fork was �xed� the amount
of data accessed for each test was not� Since the system�s
performance on the fastest tests was several orders of mag�
nitude faster than on the slowest tests� there was no �xed
amount of data that would provide useful results across all
tests� Thus� the amount of data accessed for each test var�
ied from 	 megabytes �writing �	�byte records to 	 IOPs� to
� gigabytes �eading �	�kilobyte records from �	 IOPs��



During preliminary testing� we found that communica�
tions on the SP�� would occasionally appear to freeze for
a period of time� This problem would lead to anomalous
results� one run in a series would take many times longer
to complete than the others� Fortunately� this problem was
severe enough that we could easily detect when it had oc�
cured� To work around this problem� we performed each test
three times� We discarded any outliers �de�ned as through�
put less than ��� of the average of the three runs�� and
recorded the average of the remaining runs� Disregarding
outliers� results from repeated runs were generally within
one or two kilobytes per second of one another�

��� Traditional Interface

To provide a baseline for future comparison� we �rst exam�
ined the performance of Galley using a traditional read�write
interface� This interface forced each CP to make a separate
request for each record from each fork� The tests in this
section were performed by issuing asynchronous requests to
each fork for a single record� When a request from one fork
completed� a request for the next record from that fork was
issued� By issuing asynchronous requests to each IOP� we
were generally able to keep all the IOPs in the system busy�
Since each CP accessed its portion of each sub�le sequen�
tially� and since the forks were laid out contiguously on disk�
the IOPs were frequently able to schedule disk accesses ef�
fectively� even with the small amount of information o�ered
by the traditional interface� Furthermore� the CPs were gen�
erally able to issue requests in phase� That is� when an IOP
completed a request for CP �� it would handle requests from
CPs � through n� By the time the IOP had completed the
request from CP n� it had received the next request from
CP �� Thus� even without explicit synchronization among
the CPs� the IOPs were able to service requests from each
node fairly� and were able to make good use of the disk�

Figure 
 shows the total throughput achieved when read�
ing a �le with various record sizes for each access pattern�
Figure 	 presents similar results for write performance� The
performance curves generally look similar to typical through�
put curves in other systems� that is� as the record size in�
creased� so did the performance� As in most systems� even�
tually a plateau was reached� and further increases in the
record size did not result in further performance increases�
The precise location of this plateau varied between patterns
and CP�IOP ratios� As in most systems� when accessing
data in small pieces� the total throughput was limited by
software overhead and by the high latency of transferring
data across a network� regardless of the access pattern�

When reading data in large chunks� the access pattern
had a greater e�ect on the performance� Under the parti�
tioned and interleaved access patterns� for small numbers
of IOPs� the bottleneck appeared to be the speed of the
disk� The partitioned pattern was limited to 
�� of the
peak throughput� due to excessive seeking between �le re�
gions� while the interleaved pattern was limited only by the
disks� sustainable throughput�

When the system had 
� or �	 IOPs� however� the per�
formance with large requests was greatly a�ected by the
network� The CPs were clearly capable of handling large
amounts of data� but when that data was being received
from many sources at once� congestion drastically degraded
overall performance� This degradation became evident at
larger request sizes� as the chances and cost of congestion
increased� It is not clear whether this congestion was an ef�
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Figure 
� Throughput for read requests using the traditional
Unix�like interface� There were �� CPs in every case� Note
the di�erent scales on the y�axis�

fect of the heavyweight TCP�IP protocol� or of the network
hardware� More seriously� this contention caused the com�
pute processors to become unsynchronized� their requests
then arrived at each IOP widely separated in time� which
seriously degraded the e�ectiveness of the disk scheduler�
Indeed� this e�ect is inherent in the structure of the tra�
ditional interface and could also occur when the CPs are
unsynchronized for other reasons �e�g�� if a CP�s I�O is in�
terspersed with computation�� The disk scheduler�s ine�ec�
tiveness caused extra seeks in the partitioned pattern� and
missed disk rotations and thrashing of the disk�s bu�er in
the interleaved pattern� In an attempt to reduce this con�
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Figure 	� Throughput for write requests using the tradi�
tional Unix�like interface� There were �� CPs in every case�

tention� we experimented with a clustering strategy� Rather
than having all �� CPs attempt to access all 
� or �	 IOPs si�
multaneously� we had the �rst 	 CPs access the �rst �� IOPs�
and so on� When a CP �nished reading all the data from
its �rst cluster� it began reading data from the next cluster�
Nitzberg experimented with a similar strategy on CFS to re�
duce contention for cache space on the IOP �Nit���� Figure 

shows the results of our clustering experiment� Clearly� re�
ducing the number of active sockets reduced the congestion
at each CP� and improved overall performance�

Under the broadcast access pattern� data was read from
the disk once� when the �rst compute processor requested
it� and stored in the IOP�s cache� When subsequent CPs
requested the same data� it was retrieved from the cache
rather than the disk� Since each piece of data was used many
times� the cost of accessing the disk was amortized over a
number of requests� and the limiting factors were software
and network overhead� Again� network contention a�ected
performance for large numbers of IOPs� but since every CP
accessed exactly the same disk blocks� there was no further
degradation caused by poor disk performance� As a result�
when broadcasting we merely see a slower rate of increase
for large numbers of IOPs rather than an actual reduction
in performance�

When writing data� the access pattern appeared to have
less of an impact on performance� While the write per�
formance for a partitioned pattern was comparable to the
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Figure 
� Throughput for read requests using both a simple
strategy and a clustering strategy� There were �� CPs in
every case�

read performance on the same pattern� the performance on
interleaved patterns was signi�cantly lower than when read�
ing� This di�erence in performance was primarily caused by
Galley�s write protocol� Reading data is a simple process�
when a compute processor wants to read data� it issues a
request to an I�O processor� and waits for the data to be
transferred� Writing is more complicated� when a compute
processor wants to write data to a block� it sends a request
to the I�O processor� waits for an �ack�� and only then begins
sending the data� This ack is used to ensure that the I�O
processor has space in its �le cache to receive the incoming
data� Writing is particularly expensive for requests smaller
than the �le system�s block size� When an IOP is asked to
write a single record to a block� the whole block must be
read from disk before we can write the new� small piece of
data� Reading this block increases the amount of disk I�O�
leaving less bandwidth for the application�

Network contention was not a signi�cant issue when writ�
ing data� When reading data� the bottleneck discussed above
was caused by contention at the receiving side of a network
connection� In this case� the request�response write protocol
functions as a form of �ow control� an IOP will not request
more data than it is able to handle�



��� Strided Interface

When reading data with a traditional interface� in many
cases we were able to achieve about �
� of the disks� peak
sustainable performance� This best�case performance seems
respectable� but our performance with small record sizes was
certainly less than satisfactory� The goal of our new inter�
faces is to provide high performance for the whole range
of record sizes� with particular emphasis on providing high
throughput for small records� As described in �NK���� our
higher�level interfaces are essentially di�erent faces on the
same underlying mechanism� and the performance of one is
indicative of the performance of the others� The tests in
this section were again performed by issuing asynchronous
requests to each fork� Rather than issuing a series of single�
record requests to each IOP� we used the strided interface
to issue only a single request to each IOP� That single re�
quest identi�ed all the records that should be transferred to
or from that IOP� All other experimental conditions were
identical to those in the previous section�

Figure � shows the total throughput achieved when read�
ing a �le with various record sizes for each access pattern
using the new interface� and Figure � shows corresponding
results for writing� The most striking di�erence between
these graphs and those for the traditional interface is that�
in most cases we were able to achieve peak performance with
records as small as �	 bytes�two or three orders of mag�
nitude smaller than the request sizes required to achieve
peak throughput using the traditional interface� Other than
increased opportunities for intelligent disk scheduling� the
primary performance bene�t of our interface was a reduc�
tion in the number of messages� accomplished by packing
small chunks of data into larger packets before transmitting
them to the receiving node�

When using the strided interface to read or write an in�
terleaved access pattern� or to write a partitioned access
pattern� the maximum throughput increased slightly over
the traditional interface for small numbers of IOPs� When
reading a partitioned access pattern using the strided in�
terface with a small number of IOPs� however� the peak
throughput nearly doubled� This increase in peak perfor�
mance for partitioned reads was a result of the IOP having
complete information about every CP�s access pattern� This
information allowed the IOP to intelligently schedule tens or
hundreds of disk accesses when the requests initially arrived�
Using the traditional interface� each IOP was limited to ar�
ranging a schedule based on only a single request per CP�

Once again� network contention was a problem for large
numbers of IOPs� Unlike in the traditional interface� the
contention did not interfere with disk scheduling� because
the strided interface provides complete information up front�
enabling a perfect disk schedule� Unfortunately� the best
disk schedule is often the worst network schedule� as in the
partitioned pattern� where all IOPs �rst served CP �� then
CP �� and so forth� A similar clustering strategy might
improve performance here as well�

While it is clear that the strided interface allowed the �le
system to deliver much better performance� the throughput
plots shown in Figures � and � present only part of the
picture� Figure � shows the speedup of the strided�read in�
terface over a traditional read interface� and Figure � shows
similar results for the write interfaces�� When using either
a partitioned or interleaved pattern� the strided interface

�These speedup results are based on the performance using the
simple strategy�not the clustered IOP strategy�
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Figure �� Throughput for read requests using the strided in�
terface� There were �� CPs in every case� Note the di�erent
scales on the y�axis�

read small records 

 to �
 times faster than the traditional
interface� and wrote small records �� to 

 times faster�
Generally� the con�gurations with fewer IOPs experienced
a greater increase in performance� due to the network con�
tention described above� The broadcast�read pattern had
the largest speedups for small records� ranging from �� to
��
� Although there was less room for improvement with
large records� better disk scheduling in the partitioned�read
pattern signi�cantly improved some cases� Note that since
each fork was contiguously laid out on disk� the speedup due
to disk scheduling is lower than we would expect to see in a
production system� where forks might be scattered across a
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Figure �� Throughput for write requests using the strided
interface� There were �� CPs in every case�

disk�

� Related Work

Many di�erent parallel �le systems have been developed over
the past decade� While many of these were similar to the
traditional Unix�style �le system� there have been also sev�
eral more ambitious attempts�

Bridge� one of the earliest parallel �le systems� has disks
on every node � their model does not distinguish between
CPs and IOPs� ridge provides both a traditional Unix�like
interface� and a more complex interface that allows appli�
cations to explicitly access the local �le systems on each
node �Dib����

Intel�s Concurrent File System �CFS� �Pie��� Nit���� fre�
quently cited as the canonical �rst�generation parallel �le
system� and its successor� PFS� are examples of �le systems
that provide a linear �le model to the applications� and of�
fer a Unix�like interface to the data� Other examples of this
type of parallel �le system are SUNMOS �and its successor�
PUMA� �WMR��	�� sfs �LIN��
�� and CMMD �BGST�
��

PPFS provides the end user with a linear �le that is ac�
cessed with primitives that are similar to the traditional
read��	write�� interface� In PPFS� however� the basic
transfer unit is an application�de�ned record rather than a
byte� PPFS includes a number of prede�ned data distribu�
tions� which map the logical� linear stream of records to an
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Figure �� Increase in throughput for read requests using the
strided interface� Note the di�erent scales on the y�axis�

underlying �disk� record� pair� and also allows an appli�
cation to provide its own mapping function�

The ELFS system �GP��� and the Hurricane File Sys�
tem �Kri�	� provide object�oriented interfaces� These in�
terfaces allow library designers to implement complex func�
tionality �e�g�� transparent replication of data� application�
speci�c caching algorithms� in their �les� but to hide that
complexity from end users�

The Vesta �le system� and its commercial version� PI�
OFS� address some of the same issues as Galley �CFP��
��
Most importantly� both recognize that data structures stored
in a single �le on disk are likely to be partitioned across
multiple processes in a parallel application� and that new



0

10

20

30

40

50

60

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

64 IOPs

0

10

20

30

40

50

60

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure �� Increase in throughput for write requests using
the strided interface�

interfaces are required to express this partitioning� Galley
was designed as a bottom�up approach to the problem� by
examining which access patterns are actually being used by
applications� and supporting those patterns e�ciently with�
out regard to the higher�level semantics of those patterns�
Vesta adopts a top�down approach� Vesta begins with the
assumption that all shared data structures can be repre�
sented as a rectangular array� and allows the application
to describe how the array should be partitioned across the
processors� This high�level description gives Vesta much the
same information as Galley�s interfaces� Indeed� a Vesta�
style interface could be easily implemented on top of Gal�
ley�s low�level primitives�

While Vesta�s approach o�ers many of the bene�ts of
Galley�s interfaces� it also has several limitations� The �rst
is that there is no easy way to work with irregular data
structures under Vesta� Unless your data can be mapped
onto a rectangular array� you cannot make use of Vesta�s
partitioning schemes� Second� Vesta�s partitioning schemes
do not allow for irregular partitioning� Even if your data
can be �t into a rectangular model� Vesta only allows the
data to be partitioned into regularly�distributed� rectangu�
lar sub�blocks of a single size� Examples in �CFP��
� illus�
trate both the �exibilty and limitations of Vesta�s approach
to partitioning� Finally� Vesta does not provide an easy
way for two processes to access overlapping regions of a �le�
each process�s partition is strictly disjoint from every other

process�s partition� Since many models of physical events
require logically adjacent nodes to share boundary informa�
tion� this could be an important restriction� Indeed� we have
observed that such overlapping �le access is likely to occur
in practice� Results in �NKP��
�� show that most read�only
�les had at least some bytes that were accessed by multi�
ple processors� We should note that the same results show
that in many cases� the strictly disjoint partitioning o�ered
by Vesta may match the applications� needs for write�only
�les�

In addition to full �le systems� there are numerous in�
terfaces that are designed to allow programmers to describe
their I�O needs at a higher semantic level� These interfaces
are sometimes tightly integrated into a particular language
such as HPF �BGMZ��� HPF�
� or CMF �Thi�	�� There are
also many language�independent libraries to support paral�
lel I�O� usually to support distributed matrices �TBC��	�
SW�	�� The Jovian project explores the issues relating to
the storage of irregular structures �BBS��	�� Finally� there
are also plans to extend the MPI standard to include parallel
I�O operations �MPI�	� CFF��
��

These systems and their interfaces could all be consid�
ered candidates for implementation on top of Galley� Indeed�
Galley is speci�cally designed as a low�level �le system ca�
pable of supporting multiple high�level interfaces�

� Summary

Based on the results of several workload characterization
studies� we have designed Galley� a new parallel �le system
that attempts to rectify some of the shortcomings of exist�
ing �le systems� Galley is based on a new three�dimensional
structuring of �les� which provides tremendous �exibility
and control to applications and libraries� We show how Gal�
ley�s strided I�O request reduced the aggregate latency of
multiple small requests and allowed the �le system to opti�
mize the disk accesses required to satisfy the request�

The results of our experiments indicate that our new
style of interface increased performance by several orders of
magnitude� More importantly� this new interface allows high
performance on access patterns that are known to be com�
mon in scienti�c applications� and which are known perform
poorly on most current parallel �le systems�

Future Work� This performance study reveals several ar�
eas for further work� First� Galley currently only achieves
about 
�� of the potential throughput for write operations�
While it is not surprising that write performance should lag
read performance� a factor of � seems excessively slow� Fur�
thermore� Galley currently supports only a single disk per
IOP� Since our maximum throughput is frequently limited
by the disk�s maximum throughput� adding support for mul�
tiple disks at the IOP is a high priority� Finally� we have
only examined the performance of the system running mi�
crobenchmarks� To really understand Galley�s performance�
we plan to study how real applications perform on Galley�

Availability� Although Galley is still alpha�quality software�
there are several projects underway to implement libraries�
applications� and a compiler on top of it� We hope that
these projects will help identify weak points in our imple�
mentation� and lead to a more robust system� We anticipate
making Galley publicly available in the near future�
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