
Copyright 1996 by ACM. Appeared in IOPADS ’96, May 1996, doi:10.1145/236017.236038.
IOPADS is the Workshop on I/O in Parallel and Distributed Systems.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

Performance of the Galley Parallel File System

Nils Nieuwejaar David Kotz

Department of Computer Science

Dartmouth College� Hanover� NH ����������

fnils�dfkg�cs�dartmouth�edu

Abstract

As the I�O needs of parallel scienti�c applications increase�
�le systems for multiprocessors are being designed to provide
applications with parallel access to multiple disks� Many
parallel �le systems present applications with a conventional
Unix�like interface that allows the application to access mul�
tiple disks transparently� This interface conceals the paral�
lelism within the �le system� which increases the ease of
programmability� but makes it di�cult or impossible for
sophisticated programmers and libraries to use knowledge
about their I�O needs to exploit that parallelism� Further�
more� most current parallel �le systems are optimized for a
di�erent workload than they are being asked to support� We
introduce Galley� a new parallel �le system that is intended
to e�ciently support realistic parallel workloads� Initial ex�
periments� reported in this paper� indicate that Galley is
capable of providing high�performance I�O to applications
that access data in patterns that have been observed to be
common�

� Introduction

Multiprocessors have been steadily increasing in computa�
tional performance� but the power of the I�O subsystem has
not kept pace� This disparity is partly due to the physical
limitations of storage hardware� but a more signi�cant rea�
son for this performance gap is the limitations of current par�
allel �le systems� Most modern parallel �le systems were de�
signed around several key assumptions about how scienti�c
applications would use such systems� Several recent analy�
ses of �le�system workloads on production multiprocessors
running primarily scienti�c applications show that many of
these assumptions are incorrect �KN�	� PEK��
� NKP��
��
Speci�cally� it was commonly believed that parallel� scien�
ti�c applications would have behavior similar to that of ex�
isting sequential and vector scienti�c applications �Pie���
PFDJ��� LIN��
�� These applications tend to access large
�les in large� consecutive chunks �MK��� PP�
�� Studies of

Copyright c����� by the Association for Computing
Machinery� Inc� Permission to make digital
or hard copies of part or all of this work for
personal or classroom use is granted without fee
provided that copies are not made or distributed
for profit or commercial advantage and that new
copies bear this notice and the full citation on
the first page� Copyrights for components of this
work owned by others than ACM must be honored�
Abstracting with credit is permitted�

two parallel �le�system workloads� supporting many users
and running a variety of applications in a variety of scien�
ti�c domains� under both data�parallel and control�parallel
programming models� show that many parallel� scienti�c ap�
plications make many small� non�consecutive requests to the
�le system �KN�	� PEK��
� NKP��
� NK�
�� These stud�
ies suggest that most parallel �le systems have been opti�
mized for a workload that is di�erent than that which actu�
ally exists�

Using the results from these workload studies and from
performance evaluations of existing parallel �le systems� we
have developed a new parallel �le system that is able to
deliver high performance to a variety of applications� such
as those observed in actual workloads�

The remainder of this paper is organized as follows� In
Section � we describe existing parallel �le systems� how they
are used in practice� and how they fail to meet the needs of
the applications that rely on them� In Section
 we describe
a new way of structuring �les and the interface that is used
to access those �les� Section 	 examines the performance
of Galley� In Section
 we discuss some related work� and
�nally� in Section �� we conclude and describe our future
plans�

� Background

��� Parallel File Systems

Most existing multiprocessor �le systems are based on the
conventional Unix�like �le�system interface in which �les are
seen as an addressable� linear stream of bytes �BGST�
�
Pie��� LIN��
� WMR��	�� To provide higher throughput�
the �le system typically declusters �les �i�e�� scatters the
blocks of each �le across multiple disks�� thus allowing par�
allel access to the �le� reducing the e�ect of the bottleneck
imposed by the relatively slow disk speed� Although the
�le is actually scattered across many disks� the underlying
parallel structure of the �le is hidden from the application
by the higher�level abstraction� The interface is limited to
such operations as open��� close��� read��� write��� and
seek��� all of which manipulate an implicit �le pointer�

One enhancement to the conventional interface� which is
o�ered by several multiprocessor �le systems� is a �le pointer
that is shared among the processes in an application and
provides a mechanism for regulating access to a shared �le
by those processes �Pie��� BGST�
�� The simplest shared
�le pointer is one which supports an atomic�append mode
�as in �LMKQ���� page ��	�� Most parallel �le systems pro�
vide this mode in addition to several more structured access
modes �e�g�� round�robin access to the �le pointer��

We compare Galley to other� more sophisticated� parallel
�le systems in Section
�

��� Workload Characterization

Experience has shown that the simple� Unix�like model of a
�le is well suited to uniprocessor applications that tend to
access �les in a simple� sequential fashion �OCH��
�� It has
similarly proven to be appropriate for scienti�c� vector ap�
plications that also tend to access �les sequentially �MK����
Until recently� however� there had been no investigation into
whether this �le model and interface were well suited to mas�
sively parallel scienti�c applications�

To determine whether this model was appropriate� we ex�
amined the �le�system workloads on two di�erent massively
parallel processors� running two di�erent application work�
loads �KN�	� PEK��
�� These studies show that sequential
access to consecutive portions of a �le is much less com�
mon in a multiprocessor environment than in uniprocessor
or supercomputer environments� In �NK�
� NKP��
�� we
looked more closely at the speci�c patterns in which appli�
cations accessed the �les in a parallel �le system� We found
that these applications frequently accessed �les in regular�
repeating patterns� For example� the most common pattern
was a series of requests� all of the same size� separated by a
common stride within the �le� This pattern is likely to arise
if� for example� a two�dimensional matrix is stored on disk in
row�major order� and an application distributes the columns
of the matrix across its processes in a CYCLIC fashion �us�
ing High Performance Fortran terminology �HPF�
���

In addition to assuming that parallel scienti�c applica�
tions would access �les consecutively� most parallel �le sys�
tem implementations assume that these �les would be ac�
cessed in large chunks � hundreds of kilobytes or megabytes
at a time� Our workload characterization studies show that
while some parallel scienti�c applications do issue a rela�
tively small number of large requests� there are many ap�
plications that issue thousands or millions of small �� ���
bytes� requests� putting a great deal of stress on current �le
systems�

While the standard Unix�like interface has worked well
in the past� it seems clear that it is not well suited to parallel
applications� which have more complicated access patterns
than uniprocessor and supercomputer applications� Fur�
thermore� the tracing study described in �KN�	� found that
shared �le pointers were rarely used in practice and suggests
that poor performance and a failure to match the needs of
applications are the likely causes� This �nding indicates that
the simple extensions o�ered by most of today�s parallel �le
systems are not a su�cient adaptation of this interface�

� File Structure

While most existing multiprocessor �le systems are based on
the linear �le model� the underlying parallel structure of the
�le is hidden from the application� Galley uses a more com�
plex �le model that should lead to greater �exibility and
performance� In addition to providing high performance�
Galley was designed to be �library friendly�� giving program�
mers the capability to easily layer abstractions above the �le
system� We summarize the model here� full details of this
structure may be found in �NK����

File

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

IOP 2

Fork

Fork

Data

Data

Data

Data

Data

Subfile

IOP 0 IOP 1

Figure �� Three dimensional structure of �les in the Galley
File System� The portion of the �le residing on IOP � is
shown in greater detail than the portions on the other two
IOPs�

��� Sub�les

The linear model can allow good performance when the re�
quest size generated by the application is larger than the
declustering�unit size� as multiple disks are being used in
parallel for each request� The declustering�unit size is fre�
quently measured in kilobytes �e�g�� 	KB in Intel�s CFS
�Pie����� however� while our workload characterization stud�
ies show that the typical request size in a parallel application
is much smaller� frequently under ��� bytes� This dispar�
ity means that most of the individual requests generated by
parallel applications are not being executed in parallel� An�
other problem with the linear �le model is that a dataset
may have a natural� parallel mapping onto multiple disks
that is not easily captured by the standard cyclic block�
declustering schemes� One such example may be seen in
the Flexible Image Transport System �FITS� data format�
which is used for astronomical data �NAS�	�� A FITS �le
is organized as a series of records� each of which contains a
key with multiple �elds and one or more data elements� It
is not clear that blindly striping these records across mul�
tiple disks is the optimal approach in a parallel �le system�
Rather� one could distribute the data across the disks using
the keys and knowledge about how the dataset will be used
to determine a partitioning scheme that results in highly
parallel access� Finally� the parallel�I�O algorithms commu�
nity has frequently argued for this kind of increased control
over declustering �CK�
� WGRW�
��

To address these problems� Galley allows applications to
fully control the way in which data is declustered across
the IOPs� as well as which IOP they wish to access in each
request� To allow this behavior� �les are composed of one or
more sub�les� each of which resides entirely on a single IOP�
and which may be directly addressed by the application�

��� Forks

Each sub�le in Galley is structured as a collection of one or
more independent forks� each of which is a linear� address�
able collection of bytes� similar to a traditional Unix �le�
This three�dimensional �le structure is illustrated in Fig�
ure �� Note that there is no requirement that all sub�les
have the same number of forks� or that all forks have the
same size�

The use of forks allows further application�de�ned struc�
turing� This structuring may include storing distinct types
of data in separate forks �e�g�� a list of pressures in one fork
and a list of temperatures in another�� or it may involve stor�
ing metadata in one fork and �real� data in another �e�g��
a compression library similar to that described in �SW�
�
could store compressed data chunks in one fork and direc�
tory information in another��

An example of using forks for both data and metadata
may be found in data �les like those described in �KFG�	��
The style of FITS �le described in this study contained
records with � keys� describing the frequency domain� the
antenna� and the time the data was collected� The data
portion of each record contained a pair of data elements�
one for each of two polarizations� and each data element
contains �oating�point triples for each of
� frequencies� Al�
though most queries to the data only involved one of the two
polarizations� the two sets of data were stored together in a
single �le to reduce the total amount of diskspace �by not
replicating the key information�� Unfortunately� this meant
that an application generally read all the data for each po�
larization when it was only interested in one set� Using the
Galley �le system� a programmer could choose to store the
keys in one fork� the data for one polarization in a second
fork� and the data for the other polarization in a third fork�
In addition to reducing the amount of data we need to read
when we are only interested in one of the two sets of data�
by isolating the keys in their own fork we reduce the amount
of data we need to read when scanning for a given key pair�
Unlike segmenting a traditional �le into three regions� the
fork�based structure allows each fork to grow as more records
are added�

A further discussion of the applications and bene�ts of
this structure can be found in �NK����

��� Data Access Interface

The standard Unix interface provides only simple primi�
tives for accessing the data in �les� These primitives are
limited to read��ing and write��ing consecutive regions of
a �le� As discussed above� recent studies show that these
primitives do not match the needs of many parallel applica�
tions �NK�
� NKP��
�� Speci�cally� parallel scienti�c appli�
cations frequently make many small requests to a �le� with
strided access patterns�

We de�ne two types of strided patterns� A simple�strided
access pattern is one in which all the requests are the same
size� and there is a constant distance between the begin�
ning of one request and the beginning of the next� A group
of requests that form a strided access pattern is called a
strided segment� A nested�strided access pattern is similar to
a simple�strided pattern� but rather than repeating a single
request at regular intervals� the application repeats a strided
segment at regular intervals� Studies show that both simple�
and nested�strided patterns are common in parallel� scien�
ti�c applications �NK�
� NKP��
�� Indeed� in one study�
over ��� of the requests in the entire workload were part of
one of these two patterns�

Galley provides three interfaces that allow applications
to explicitly make regular� structured requests such as those
described above� as well as one interface for unstructured
requests� These interfaces allow us to combine many small
requests into a single� larger request� which can lead to im�
proved performance in two ways� First� reducing the number
of requests can lower the aggregate latency costs� particu�

larly for those applications that issue thousands or millions
of tiny requests� Second� recent work has shown that pro�
viding a �le system with more information about an applica�
tion�s access patterns can lead to tremendous performance
improvements by introducing opportunities for intelligent
scheduling of I�O and communication �Kot�	��

The higher�level interfaces o�ered by Galley are summa�
rized below� These interfaces are described in greater detail�
and examples are provided� in �NK��� NK�
��

����� Simple�strided Requests

gfs�read�strided�int fid� void �buf� ulong offset�
ulong rec�size� int f�stride�
int m�stride� int quant�

Beginning at offset� the �le system will read quant
records of rec size bytes� where the o�set of each record
is f stride bytes greater than that of the previous record�
The records are stored in memory beginning at buf� The
o�set into the bu�er is changed by m stride bytes after
each record is transferred� Note that either the �le stride
�f stride� or the memory stride �m stride� may be nega�
tive� The call returns the number of bytes transferred�

When m stride is equal to rec size� data will be gath�
ered from disk� and stored contiguously in memory� When
f stride is equal to rec size� data will be read from a con�
tiguous region of a �le� and scattered in memory� It is also
possible for both m stride and f stride to be di�erent than
rec size� and possibly each other�

Naturally� there is a corresponding gfs write strided��
call�

����� Nested�strided Requests

gfs�read�nested�int fid� void �buf� ulong offset�
ulong rec�size� struct stride �vec�
int levels�

The vec is a pointer to an array of �f stride� m stride�
quantity� triples listed from the innermost level of nesting
to the outermost� The number of levels of nesting is indi�
cated by levels�

����� Nested�batched Requests

While we found that most of the small requests in the ob�
served workloads were part of strided patterns� there may
well be applications that could bene�t from some form of
high�level� regular request� but would �nd the nested�strided
interface too restrictive� For those applications� we provide
a nested�batched interface� The nested�batched interface al�
lows applications to make an arbitrary series of requests�
which may then be repeated at regular intervals� This in�
terface is nested in that any of the requests in the arbitrary
series may themselves be a batched request� To conserve
space� we do not present the details here �see �NK��� NK�
���

����� List Requests

Finally� in addition to these structured operations� Galley
provides a more general �le interface� called the list inter�
face� which is similar to the POSIX lio listio�� inter�
face �IBM�	�� This interface simply takes an array of ��le
o�set� memory o�set� size� triples from the application� This
interface is useful for applications with access patterns that

do not have any inherently regular structure� While this in�
terface essentially functions as a series of simple reads and
writes� it provides the �le system with enough information
to make intelligent disk�scheduling decisions� as well as the
ability to coalesce many small pieces of data into larger mes�
sages for transferring between CPs and IOPs�

� Performance

Performance studies of parallel �le systems tend to focus on
the performance of large� sequential requests� Indeed� most
do not even examine the performance of requests of fewer
than many kilobytes �Nit��� BBH�
� KR�	�� As discussed
above� recent workload characterizations show that parallel
�le systems are frequently called upon to service many small
requests� This disparity means that most performance stud�
ies actually fail to examine how a �le system can be expected
to perform when running real applications in a production
environment�

��� Experimental Platform

The Galley File System was designed to be portable across
workstation clusters and massively parallel processors� The
results in this paper were obtained on the IBM SP�� at
NASA Ames� Numerical Aerodynamic Simulation facility�
This system has ��� nodes� each running AIX
���
� but no
more than �	� are available for general use� Each node has
a ���� MhZ POWER� processor� at least ��� megabytes
of memory� and is connected to IBM�s high�performance
switch� While the switch allows throughput of up to
	 MB�s
using one of IBM�s message�passing libraries �PVMe� MPL�
or MPI�� those libraries cannot operate in a multithreaded
environment� Furthermore� neither MPL nor MPI allow ap�
plications to be implemented as persistent servers and tran�
sient clients� As a result of these limitations� Galley is im�
plemented on top of TCP�IP� with a maximum throughput
of approximately �� MB�s on the SP���

Each IOP in Galley controls a single disk� which it log�
ically partitions into
�K blocks� Each IOP also main�
tains a cache of the most recently used blocks from the
disk it controls� For this study� the size of each cache was

	 megabytes� large enough to hold ���� blocks� Galley does
not attempt to prefetch data for two reasons� First� indis�
criminate prefetching can cause the cache to thrash �Nit����
Second� prefetching is based on the assumption that the
system can intelligently guess what an application is going
to request next� Using the higher�level requests described
above� there is frequently no need for Galley to make guesses
about an application�s behavior� the application is able to
explicitly provide that information to each IOP�

Although each node on the SP�� has a local disk� access
to that disk must be performed through AIX�s Journaling
File System� While Galley was originally implemented to
use these disks� we felt that our performance results were
being in�ated by the prefetching and caching provided by
JFS� Speci�cally� we frequently measured apparent through�
puts of over �� MB�s from a single disk� Accordingly� the
performance results presented here were obtained through
the use of a simulation of an HP ��
�� SCSI hard disk�
which has an average seek time of �
�
 ms and a maximum
sustained throughput of ��� MB�s �HP���� Each IOP pro�
vides access to one simulated disk�

Our implementation of the disk model was based on ear�
lier implementations �RW�	� KTR�	�� Among the factors
simulated by our model are head�switch time� track�switch
time� SCSI�bus overhead� controller overhead� rotational la�
tency� and the disk cache� To validate our model� we used
a trace�driven simulation� using data provided by Hewlett�
Packard and used by Ruemmler and Wilkes in their study��

Comparing the results of this trace�driven simulation with
the measured results from the actual disk� we obtained a
demerit �gure �see �RW�	� for a discussion of this measure�
of
���� indicating that our model was extremely accurate�

The simulated disk is integrated into Galley by creating
a new thread on each IOP to execute the simulation� When
the thread receives a disk request� it calculates the time
required to complete the request� and then suspends itself
for that length of time� While� in most cases� the disk thread
does not actually load or store the requested data� metadata
blocks must be preserved� To avoid losing that data� the
disk thread maintains a small cache� which is used to store
�important� data� When the simulation thread copies data
to or from its cache� the amount of time required to complete
the copy is deducted from the amount of time the thread is
suspended� It should be noted that the remainder of the
Galley code is unaware that it is accessing a simulated disk�

��� Access Patterns

We examine the performance of Galley under several di�er�
ent access patterns� each of which is composed of a series of
requests for �xed�size pieces of data� or records� The pat�
terns we examine are shown in Figure �� While these pat�
terns do not directly correspond to a particular �real world�
application� they are representative of the general patterns
we observed to be most common in production multipro�
cessor systems� Our analysis is done with a single �le that
contains a single sub�le �each with a single fork� on each
IOP� and the patterns shown in Figure � re�ect the pat�
terns that we access from each IOP� The correspondence
between the IOP�level access patterns we use in this study�
and the �le�level patterns observed in actual applications� is
discussed for each pattern below�

The simplest access pattern we call broadcast� With this
access pattern every compute node reads the whole �le �i�e��
the IOPs broadcast the whole �le to all the CPs�� This ac�
cess pattern models the series of requests we would expect
to see when all the nodes in an application read a shared
�le� such as a con�guration �le or the initial state for a sim�
ulation� Since an application that wants to access all the
data in a �le must access all the data in every sub�le� a
broadcast pattern at the �le level clearly corresponds to a
broadcast pattern at each sub�le� Although it seems coun�
terintuitive for an application to access large� contiguous
regions of a �le in small chunks� such behavior does occur
in practice� One likely reason that data would be accessed
in this fashion is that records stored contiguously on disk
are to be stored non�contiguously in memory� In the sim�
plest case� this pattern would be similar to the interleaved
pattern described below� with the interleaving occurring in
memory rather than on disk� Since it seems unlikely that an
application would want every node to write to the entire �le�
we did not measure the performance of the broadcast�write
case�

�Kindly provided to us by John Wilkes and HP� Contact John
Wilkes at wilkes�hplabs�hp�com for information about obtaining the
traces�

(a) Broadcast (b) Partitioned

(c) Interleaved

Figure �� The three access patterns examined in this study� Each pattern is displayed with two types of view� the pattern

as applied to a linear �le� and matrix distributions that could give rise to the pattern� We assume that the matrices are

stored in row�major order� Each block corresponds to a single record in the �le� and the highlighted blocks represent the

records accessed by a single compute node in a group of four�

The next access pattern we refer to as partitioned� With
this pattern� each compute node accesses a distinct� contigu�
ous region of each �le� This pattern could represent either
a one�dimensional partitioning of data or the series of ac�
cesses we would expect to see if a two�dimensional matrix
were stored on disk in row�major order� and the application
distributed the rows of the matrix across the compute nodes
in a BLOCK fashion �using HPF terminology �HPF�
��� A
partitioned access pattern at the �le level can map onto two
di�erent access patterns at the IOP level� The �rst pattern
arises if the �le is distributed across the disks in a BLOCK
fashion� that is the �rst ��n of the �le bytes in the �le are
mapped onto the �rst of the n IOPs� and so forth� For each
IOP� this mapping results in an access pattern similar to
a broadcast pattern with � compute processor� The other�
more interesting� mapping distributes blocks of data across
the disks in a CYCLIC fashion� as in most implementations
of a linear �le model� This distribution results in accesses
by each CP to each IOP� In a system with 	 CPs� the �rst
CP would access the �rst ��	 of the data in each sub�le�
and so forth� Thus a partitioned pattern at the �le level
leads to a partitioned pattern at each IOP� As with the
broadcast pattern� applications may access data in this pat�
tern using a small record size if the the data is to be stored
non�contiguously in memory�

The �nal access pattern is an interleaved pattern� In this
pattern� each compute node requests a series of noncontigu�
ous� but regularly spaced� records from a �le� For our test�
ing� the interleaving was based on the record size� That is�
if �� compute nodes were reading a �le with a record size
of
�� bytes� each node would read
�� bytes and then skip
ahead ���� ����
��� bytes before reading the next chunk of

data� This pattern models the accesses generated by an ap�
plication that distributes the columns of a two�dimensional
matrix across the processors in an application� in a CYCLIC
fashion� if the matrix is stored in a linear �le in row�major or�
der� Assume the linear �le is distributed traditionally� with
blocks distributed across the sub�les in a CYCLIC fashion�
In the simplest case� the block size might be evenly divisible
by the product of the record size and the number of CPs� In
this case� every block in the �le is accessed with the same in�
terleaved pattern� and any rearrangement of the blocks �be�
tween or within disks� will result in the same sub�le�access
pattern� Thus� the blocks can be declustered across the sub�
�les� but the access pattern within each sub�le will still be
interleaved� There are� of course� more complex mappings
of an interleaved �le�level pattern to an IOP�level pattern�
but we focus on the simplest case�

For each test� we held the number of compute proces�
sors constant at ��� and varied the number of IOPs �each
with one disk� from 	 to �	� Thus� the CP�IOP ratio var�
ied from ��	 to 	��� Each test began with an empty bu�er
cache on each IOP� and each write test included the time re�
quired for all the data to actually be written to disk� Each
fork was laid out contiguously on disk� allowing us to better
understand how each access pattern a�ects the system�s per�
formance� While the size of each fork was �xed� the amount
of data accessed for each test was not� Since the system�s
performance on the fastest tests was several orders of mag�
nitude faster than on the slowest tests� there was no �xed
amount of data that would provide useful results across all
tests� Thus� the amount of data accessed for each test var�
ied from 	 megabytes �writing �	�byte records to 	 IOPs� to
� gigabytes �eading �	�kilobyte records from �	 IOPs��

During preliminary testing� we found that communica�
tions on the SP�� would occasionally appear to freeze for
a period of time� This problem would lead to anomalous
results� one run in a series would take many times longer
to complete than the others� Fortunately� this problem was
severe enough that we could easily detect when it had oc�
cured� To work around this problem� we performed each test
three times� We discarded any outliers �de�ned as through�
put less than ��� of the average of the three runs�� and
recorded the average of the remaining runs� Disregarding
outliers� results from repeated runs were generally within
one or two kilobytes per second of one another�

��� Traditional Interface

To provide a baseline for future comparison� we �rst exam�
ined the performance of Galley using a traditional read�write
interface� This interface forced each CP to make a separate
request for each record from each fork� The tests in this
section were performed by issuing asynchronous requests to
each fork for a single record� When a request from one fork
completed� a request for the next record from that fork was
issued� By issuing asynchronous requests to each IOP� we
were generally able to keep all the IOPs in the system busy�
Since each CP accessed its portion of each sub�le sequen�
tially� and since the forks were laid out contiguously on disk�
the IOPs were frequently able to schedule disk accesses ef�
fectively� even with the small amount of information o�ered
by the traditional interface� Furthermore� the CPs were gen�
erally able to issue requests in phase� That is� when an IOP
completed a request for CP �� it would handle requests from
CPs � through n� By the time the IOP had completed the
request from CP n� it had received the next request from
CP �� Thus� even without explicit synchronization among
the CPs� the IOPs were able to service requests from each
node fairly� and were able to make good use of the disk�

Figure
 shows the total throughput achieved when read�
ing a �le with various record sizes for each access pattern�
Figure 	 presents similar results for write performance� The
performance curves generally look similar to typical through�
put curves in other systems� that is� as the record size in�
creased� so did the performance� As in most systems� even�
tually a plateau was reached� and further increases in the
record size did not result in further performance increases�
The precise location of this plateau varied between patterns
and CP�IOP ratios� As in most systems� when accessing
data in small pieces� the total throughput was limited by
software overhead and by the high latency of transferring
data across a network� regardless of the access pattern�

When reading data in large chunks� the access pattern
had a greater e�ect on the performance� Under the parti�
tioned and interleaved access patterns� for small numbers
of IOPs� the bottleneck appeared to be the speed of the
disk� The partitioned pattern was limited to
�� of the
peak throughput� due to excessive seeking between �le re�
gions� while the interleaved pattern was limited only by the
disks� sustainable throughput�

When the system had
� or �	 IOPs� however� the per�
formance with large requests was greatly a�ected by the
network� The CPs were clearly capable of handling large
amounts of data� but when that data was being received
from many sources at once� congestion drastically degraded
overall performance� This degradation became evident at
larger request sizes� as the chances and cost of congestion
increased� It is not clear whether this congestion was an ef�

0

5

10

15

20

25

30

35

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

64 IOPs

0

5

10

15

20

25

30

35

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

20

40

60

80

100

120

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Broadcast Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure
� Throughput for read requests using the traditional
Unix�like interface� There were �� CPs in every case� Note
the di�erent scales on the y�axis�

fect of the heavyweight TCP�IP protocol� or of the network
hardware� More seriously� this contention caused the com�
pute processors to become unsynchronized� their requests
then arrived at each IOP widely separated in time� which
seriously degraded the e�ectiveness of the disk scheduler�
Indeed� this e�ect is inherent in the structure of the tra�
ditional interface and could also occur when the CPs are
unsynchronized for other reasons �e�g�� if a CP�s I�O is in�
terspersed with computation�� The disk scheduler�s ine�ec�
tiveness caused extra seeks in the partitioned pattern� and
missed disk rotations and thrashing of the disk�s bu�er in
the interleaved pattern� In an attempt to reduce this con�

0

5

10

15

20

25

30

35

40

45

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

64 IOPs

0

5

10

15

20

25

30

35

40

45

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure 	� Throughput for write requests using the tradi�
tional Unix�like interface� There were �� CPs in every case�

tention� we experimented with a clustering strategy� Rather
than having all �� CPs attempt to access all
� or �	 IOPs si�
multaneously� we had the �rst 	 CPs access the �rst �� IOPs�
and so on� When a CP �nished reading all the data from
its �rst cluster� it began reading data from the next cluster�
Nitzberg experimented with a similar strategy on CFS to re�
duce contention for cache space on the IOP �Nit���� Figure

shows the results of our clustering experiment� Clearly� re�
ducing the number of active sockets reduced the congestion
at each CP� and improved overall performance�

Under the broadcast access pattern� data was read from
the disk once� when the �rst compute processor requested
it� and stored in the IOP�s cache� When subsequent CPs
requested the same data� it was retrieved from the cache
rather than the disk� Since each piece of data was used many
times� the cost of accessing the disk was amortized over a
number of requests� and the limiting factors were software
and network overhead� Again� network contention a�ected
performance for large numbers of IOPs� but since every CP
accessed exactly the same disk blocks� there was no further
degradation caused by poor disk performance� As a result�
when broadcasting we merely see a slower rate of increase
for large numbers of IOPs rather than an actual reduction
in performance�

When writing data� the access pattern appeared to have
less of an impact on performance� While the write per�
formance for a partitioned pattern was comparable to the

0

20

40

60

80

100

120

140

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

Simple/32 IOPs
Simple/64 IOPs

Clustered/32 IOPs
Clustered/64 IOPs

Interleaved Access Pattern

Simple/32 IOPs
Simple/64 IOPs

Clustered/32 IOPs
Clustered/64 IOPs

0

20

40

60

80

100

120

140

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Figure
� Throughput for read requests using both a simple
strategy and a clustering strategy� There were �� CPs in
every case�

read performance on the same pattern� the performance on
interleaved patterns was signi�cantly lower than when read�
ing� This di�erence in performance was primarily caused by
Galley�s write protocol� Reading data is a simple process�
when a compute processor wants to read data� it issues a
request to an I�O processor� and waits for the data to be
transferred� Writing is more complicated� when a compute
processor wants to write data to a block� it sends a request
to the I�O processor� waits for an �ack�� and only then begins
sending the data� This ack is used to ensure that the I�O
processor has space in its �le cache to receive the incoming
data� Writing is particularly expensive for requests smaller
than the �le system�s block size� When an IOP is asked to
write a single record to a block� the whole block must be
read from disk before we can write the new� small piece of
data� Reading this block increases the amount of disk I�O�
leaving less bandwidth for the application�

Network contention was not a signi�cant issue when writ�
ing data� When reading data� the bottleneck discussed above
was caused by contention at the receiving side of a network
connection� In this case� the request�response write protocol
functions as a form of �ow control� an IOP will not request
more data than it is able to handle�

��� Strided Interface

When reading data with a traditional interface� in many
cases we were able to achieve about �
� of the disks� peak
sustainable performance� This best�case performance seems
respectable� but our performance with small record sizes was
certainly less than satisfactory� The goal of our new inter�
faces is to provide high performance for the whole range
of record sizes� with particular emphasis on providing high
throughput for small records� As described in �NK���� our
higher�level interfaces are essentially di�erent faces on the
same underlying mechanism� and the performance of one is
indicative of the performance of the others� The tests in
this section were again performed by issuing asynchronous
requests to each fork� Rather than issuing a series of single�
record requests to each IOP� we used the strided interface
to issue only a single request to each IOP� That single re�
quest identi�ed all the records that should be transferred to
or from that IOP� All other experimental conditions were
identical to those in the previous section�

Figure � shows the total throughput achieved when read�
ing a �le with various record sizes for each access pattern
using the new interface� and Figure � shows corresponding
results for writing� The most striking di�erence between
these graphs and those for the traditional interface is that�
in most cases we were able to achieve peak performance with
records as small as �	 bytes�two or three orders of mag�
nitude smaller than the request sizes required to achieve
peak throughput using the traditional interface� Other than
increased opportunities for intelligent disk scheduling� the
primary performance bene�t of our interface was a reduc�
tion in the number of messages� accomplished by packing
small chunks of data into larger packets before transmitting
them to the receiving node�

When using the strided interface to read or write an in�
terleaved access pattern� or to write a partitioned access
pattern� the maximum throughput increased slightly over
the traditional interface for small numbers of IOPs� When
reading a partitioned access pattern using the strided in�
terface with a small number of IOPs� however� the peak
throughput nearly doubled� This increase in peak perfor�
mance for partitioned reads was a result of the IOP having
complete information about every CP�s access pattern� This
information allowed the IOP to intelligently schedule tens or
hundreds of disk accesses when the requests initially arrived�
Using the traditional interface� each IOP was limited to ar�
ranging a schedule based on only a single request per CP�

Once again� network contention was a problem for large
numbers of IOPs� Unlike in the traditional interface� the
contention did not interfere with disk scheduling� because
the strided interface provides complete information up front�
enabling a perfect disk schedule� Unfortunately� the best
disk schedule is often the worst network schedule� as in the
partitioned pattern� where all IOPs �rst served CP �� then
CP �� and so forth� A similar clustering strategy might
improve performance here as well�

While it is clear that the strided interface allowed the �le
system to deliver much better performance� the throughput
plots shown in Figures � and � present only part of the
picture� Figure � shows the speedup of the strided�read in�
terface over a traditional read interface� and Figure � shows
similar results for the write interfaces�� When using either
a partitioned or interleaved pattern� the strided interface

�These speedup results are based on the performance using the
simple strategy�not the clustered IOP strategy�

0

10

20

30

40

50

60

70

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Broadcast Access Pattern

0

20

40

60

80

100

120

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

20

30

40

50

60

70

80

90

100

110

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Figure �� Throughput for read requests using the strided in�
terface� There were �� CPs in every case� Note the di�erent
scales on the y�axis�

read small records

 to �
 times faster than the traditional
interface� and wrote small records �� to

 times faster�
Generally� the con�gurations with fewer IOPs experienced
a greater increase in performance� due to the network con�
tention described above� The broadcast�read pattern had
the largest speedups for small records� ranging from �� to
��
� Although there was less room for improvement with
large records� better disk scheduling in the partitioned�read
pattern signi�cantly improved some cases� Note that since
each fork was contiguously laid out on disk� the speedup due
to disk scheduling is lower than we would expect to see in a
production system� where forks might be scattered across a

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

5

10

15

20

25

30

35

40

45

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

64 IOPs

0

5

10

15

20

25

30

35

40

45

64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure �� Throughput for write requests using the strided
interface� There were �� CPs in every case�

disk�

� Related Work

Many di�erent parallel �le systems have been developed over
the past decade� While many of these were similar to the
traditional Unix�style �le system� there have been also sev�
eral more ambitious attempts�

Bridge� one of the earliest parallel �le systems� has disks
on every node � their model does not distinguish between
CPs and IOPs� ridge provides both a traditional Unix�like
interface� and a more complex interface that allows appli�
cations to explicitly access the local �le systems on each
node �Dib����

Intel�s Concurrent File System �CFS� �Pie��� Nit���� fre�
quently cited as the canonical �rst�generation parallel �le
system� and its successor� PFS� are examples of �le systems
that provide a linear �le model to the applications� and of�
fer a Unix�like interface to the data� Other examples of this
type of parallel �le system are SUNMOS �and its successor�
PUMA� �WMR��	�� sfs �LIN��
�� and CMMD �BGST�
��

PPFS provides the end user with a linear �le that is ac�
cessed with primitives that are similar to the traditional
read��	write�� interface� In PPFS� however� the basic
transfer unit is an application�de�ned record rather than a
byte� PPFS includes a number of prede�ned data distribu�
tions� which map the logical� linear stream of records to an

0

20

40

60

80

100

120

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

64 IOPs

0

20

40

60

80

100

120

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

20

40

60

80

100

120

140

160

180

200

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Broadcast Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure �� Increase in throughput for read requests using the
strided interface� Note the di�erent scales on the y�axis�

underlying �disk� record� pair� and also allows an appli�
cation to provide its own mapping function�

The ELFS system �GP��� and the Hurricane File Sys�
tem �Kri�	� provide object�oriented interfaces� These in�
terfaces allow library designers to implement complex func�
tionality �e�g�� transparent replication of data� application�
speci�c caching algorithms� in their �les� but to hide that
complexity from end users�

The Vesta �le system� and its commercial version� PI�
OFS� address some of the same issues as Galley �CFP��
��
Most importantly� both recognize that data structures stored
in a single �le on disk are likely to be partitioned across
multiple processes in a parallel application� and that new

0

10

20

30

40

50

60

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

64 IOPs

0

10

20

30

40

50

60

64 256 1024 4096 16384 65536

Sp
ee

du
p

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Figure �� Increase in throughput for write requests using
the strided interface�

interfaces are required to express this partitioning� Galley
was designed as a bottom�up approach to the problem� by
examining which access patterns are actually being used by
applications� and supporting those patterns e�ciently with�
out regard to the higher�level semantics of those patterns�
Vesta adopts a top�down approach� Vesta begins with the
assumption that all shared data structures can be repre�
sented as a rectangular array� and allows the application
to describe how the array should be partitioned across the
processors� This high�level description gives Vesta much the
same information as Galley�s interfaces� Indeed� a Vesta�
style interface could be easily implemented on top of Gal�
ley�s low�level primitives�

While Vesta�s approach o�ers many of the bene�ts of
Galley�s interfaces� it also has several limitations� The �rst
is that there is no easy way to work with irregular data
structures under Vesta� Unless your data can be mapped
onto a rectangular array� you cannot make use of Vesta�s
partitioning schemes� Second� Vesta�s partitioning schemes
do not allow for irregular partitioning� Even if your data
can be �t into a rectangular model� Vesta only allows the
data to be partitioned into regularly�distributed� rectangu�
lar sub�blocks of a single size� Examples in �CFP��
� illus�
trate both the �exibilty and limitations of Vesta�s approach
to partitioning� Finally� Vesta does not provide an easy
way for two processes to access overlapping regions of a �le�
each process�s partition is strictly disjoint from every other

process�s partition� Since many models of physical events
require logically adjacent nodes to share boundary informa�
tion� this could be an important restriction� Indeed� we have
observed that such overlapping �le access is likely to occur
in practice� Results in �NKP��
�� show that most read�only
�les had at least some bytes that were accessed by multi�
ple processors� We should note that the same results show
that in many cases� the strictly disjoint partitioning o�ered
by Vesta may match the applications� needs for write�only
�les�

In addition to full �le systems� there are numerous in�
terfaces that are designed to allow programmers to describe
their I�O needs at a higher semantic level� These interfaces
are sometimes tightly integrated into a particular language
such as HPF �BGMZ��� HPF�
� or CMF �Thi�	�� There are
also many language�independent libraries to support paral�
lel I�O� usually to support distributed matrices �TBC��	�
SW�	�� The Jovian project explores the issues relating to
the storage of irregular structures �BBS��	�� Finally� there
are also plans to extend the MPI standard to include parallel
I�O operations �MPI�	� CFF��
��

These systems and their interfaces could all be consid�
ered candidates for implementation on top of Galley� Indeed�
Galley is speci�cally designed as a low�level �le system ca�
pable of supporting multiple high�level interfaces�

� Summary

Based on the results of several workload characterization
studies� we have designed Galley� a new parallel �le system
that attempts to rectify some of the shortcomings of exist�
ing �le systems� Galley is based on a new three�dimensional
structuring of �les� which provides tremendous �exibility
and control to applications and libraries� We show how Gal�
ley�s strided I�O request reduced the aggregate latency of
multiple small requests and allowed the �le system to opti�
mize the disk accesses required to satisfy the request�

The results of our experiments indicate that our new
style of interface increased performance by several orders of
magnitude� More importantly� this new interface allows high
performance on access patterns that are known to be com�
mon in scienti�c applications� and which are known perform
poorly on most current parallel �le systems�

Future Work� This performance study reveals several ar�
eas for further work� First� Galley currently only achieves
about
�� of the potential throughput for write operations�
While it is not surprising that write performance should lag
read performance� a factor of � seems excessively slow� Fur�
thermore� Galley currently supports only a single disk per
IOP� Since our maximum throughput is frequently limited
by the disk�s maximum throughput� adding support for mul�
tiple disks at the IOP is a high priority� Finally� we have
only examined the performance of the system running mi�
crobenchmarks� To really understand Galley�s performance�
we plan to study how real applications perform on Galley�

Availability� Although Galley is still alpha�quality software�
there are several projects underway to implement libraries�
applications� and a compiler on top of it� We hope that
these projects will help identify weak points in our imple�
mentation� and lead to a more robust system� We anticipate
making Galley publicly available in the near future�

References

�BBH�
� Sandra Johnson Baylor� Caroline B� Ben�
veniste� and Yarson Hsu� Performance evalu�
ation of a parallel I�O architecture� In Proceed�
ings of the �th ACM International Conference
on Supercomputing� pages 	�	�	�
� Barcelona�
July ���
�

�BBS��	� Robert Bennett� Kelvin Bryant� Alan Suss�
man� Raja Das� and Joel Saltz� Jovian�
A framework for optimizing parallel I�O�
In Proceedings of the Scalable Parallel Li�
braries Conference� pages ������ IEEE
Computer Society Press� October ���	�
ftp���hpsl�cs�umd�edu�pub�papers�splc�	�ps�Z�

�BGMZ��� Peter Brezany� Michael Gernt� Piyush Mehotra�
and Hans Zima� Concurrent �le operations in a
High Performance FORTRAN� In Proceedings
of Supercomputing ���� pages �
���
�� �����

�BGST�
� Michael L� Best� Adam Greenberg� Craig Stan�
�ll� and Lewis W� Tucker� CMMD I�O� A
parallel Unix I�O� In Proceedings of the Sev�
enth International Parallel Processing Sympo�
sium� pages 	���	�
� ���
�

�CFF��
� Peter Corbett� Dror Feitelson� Sam Fineberg�
Yarsun Hsu� Bill Nitzberg� Jean�Pierre Prost�
Marc Snir� Bernard Traversat� and Parkson
Wong� Overview of the MPI�IO parallel I�O
interface� In IPPS ��� Workshop on I�O in
Parallel and Distributed Systems� pages ���
�
Santa Barbara� CA� April ���
�

�CFP��
� Peter F� Corbett� Dror G� Feitelson� Jean�
Pierre Prost� George S� Almasi� Sandra John�
son Baylor� Anthony S� Bolmarcich� Yarsun
Hsu� Julian Satran� Marc Snir� Robert Colao�
Brian Herr� Joseph Kavaky� Thomas R� Mor�
gan� and Anthony Zlotek� Parallel �le systems
for the IBM SP computers� IBM Systems Jour�
nal� pages �����	�� ���
�

�CK�
� Thomas H� Cormen and David Kotz� Integrat�
ing theory and practice in parallel �le systems�
In Proceedings of the ���� DAGS�PC Sympo�
sium� pages �	��	� Hanover� NH� June ���
�
Dartmouth Institute for Advanced Graduate
Studies� Revised as Dartmouth PCS�TR�
����
on ������	�

�Dib��� Peter C� Dibble� A Parallel Interleaved File
System� PhD thesis� University of Rochester�
March �����

�GP��� Andrew S� Grimshaw and Je� Prem� High
performance parallel �le objects� In Sixth
Annual Distributed�Memory Computer Confer�
ence� pages ������
� �����

�HP��� Hewlett Packard� HP�	��
����
� �
���inch
SCSI Disk Drives Technical Reference Manual�
second edition� June ����� HP Part number

�������
�

�HPF�
� High Performance Fortran Forum� High
Performance Fortran Language Spec�
i�cation� ��� edition� May
 ���
�
http���www�erc�msstate�edu�hp��report�html�

�IBM�	� IBM� AIX Version �
� General Programming
Concepts� twelfth edition� October ���	�

�KFG�	� John F� Karpovich� James C� French� and An�
drew S� Grimshaw� High performance access to
radio astronomy data� A case study� In Pro�
ceedings of the 	th International Working Con�
ference on Scienti�c and Statistical Database
Management� pages �	���	�� September ���	�
Also available as UVA TR CS��	��
�

�KN�	� David Kotz and Nils Nieuwejaar� Dynamic �le�
access characteristics of a production parallel
scienti�c workload� In Proceedings of Supercom�
puting ���� pages �	���	�� November ���	�

�Kot�	� David Kotz� Disk�directed I�O for MIMD mul�
tiprocessors� In Proceedings of the ���� Sympo�
sium on Operating Systems Design and Imple�
mentation� pages ����	� November ���	� Up�
dated as Dartmouth TR PCS�TR�	���� on
November �� ���	�

�KR�	� Thomas T� Kwan and Daniel A� Reed� Perfor�
mance of the CM�
 scalable �le system� In Pro�
ceedings of the �th ACM International Confer�
ence on Supercomputing� pages �
����
� July
���	�

�Kri�	� Orran Krieger� HFS� A �exible �le system for
shared�memory multiprocessors� PhD thesis�
University of Toronto� October ���	�

�KTR�	� David Kotz� Song Bac Toh� and Sriram Rad�
hakrishnan� A detailed simulation model of the
HP ��
�� disk drive� Technical Report PCS�
TR�	����� Dept� of Computer Science� Dart�
mouth College� July ���	�

�LIN��
� Susan J� LoVerso� Marshall Isman� Andy
Nanopoulos� William Nesheim� Ewan D� Milne�
and Richard Wheeler� sfs� A parallel �le sys�
tem for the CM�
� In Proceedings of the ����
Summer USENIX Conference� pages ����
�
�
���
�

�LMKQ��� Samuel J� Le�er� Marshall Kirk McKusick�
Michael J� Karels� and John S� Quarterman�
The Design and Implementation of the �
�BSD
UNIX Operating System� Addison�Wesley�
�����

�MK��� Ethan L� Miller and Randy H� Katz� In�
put�output behavior of supercomputer appli�
cations� In Proceedings of Supercomputing ����
pages
���
��� November �����

�MPI�	� Message Passing Interface Forum�
MPI� A Message�Passing Interface
Standard� ��� edition� May
 ���	�
http���www�mcs�anl�gov�Projects�mpi�standard�html�

�NAS�	� NASA�Science O�ce of Standards and Tech�
nology� NASA Goddard Space Flight Center�
Greensbelt� MD ������� A User�s Guide for
the Flexible Image Transport System �FITS��

�� edition� May ���	�

�Nit��� Bill Nitzberg� Performance of the iPSC����
Concurrent File System� Technical Report
RND�������� NAS Systems Division� NASA
Ames� December �����

�NK�
� Nils Nieuwejaar and David Kotz� Low�level in�
terfaces for high�level parallel I�O� In IPPS ���
Workshop on I�O in Parallel and Distributed
Systems� pages 	����� April ���
�

�NK��� Nils Nieuwejaar and David Kotz� The Galley
parallel �le system� In Proceedings of the ��th
ACM International Conference on Supercom�
puting� May ����� To appear�

�NKP��
� Nils Nieuwejaar� David Kotz� Apratim Pu�
rakayastha� Carla Schlatter Ellis� and Michael
Best� File�access characteristics of parallel sci�
enti�c workloads� Technical Report PCS�TR�
�
��
� Dept� of Computer Science� Dartmouth
College� August ���
� Submitted to IEEE
TPDS�

�OCH��
� John Ousterhout� Herv�e Da Costa� David Har�
rison� John Kunze� Mike Kupfer� and James
Thompson� A trace driven analysis of the UNIX
	�� BSD �le system� In Proceedings of the Tenth
ACM Symposium on Operating Systems Prin�
ciples� pages �
��	� December ���
�

�PEK��
� Apratim Purakayastha� Carla Schlatter Ellis�
David Kotz� Nils Nieuwejaar� and Michael Best�
Characterizing parallel �le�access patterns on a
large�scale multiprocessor� In Proceedings of the
Ninth International Parallel Processing Sympo�
sium� pages ��
����� April ���
�

�PFDJ��� Terrence W� Pratt� James C� French� Phillip M�
Dickens� and Stanley A� Janet� Jr� A compari�
son of the architecture and performance of two
parallel �le systems� In Fourth Conference on
Hypercube Concurrent Computers and Applica�
tions� pages �������� �����

�Pie��� Paul Pierce� A concurrent �le system for a
highly parallel mass storage system� In Fourth
Conference on Hypercube Concurrent Comput�
ers and Applications� pages �

����� �����

�PP�
� Barbara K� Pasquale and George C� Polyzos� A
static analysis of I�O characteristics of scienti�c
applications in a production workload� In Pro�
ceedings of Supercomputing ���� pages
���
���
���
�

�RW�	� Chris Ruemmler and John Wilkes� An intro�
duction to disk drive modeling� IEEE Com�
puter� ���
�������� March ���	�

�SW�	� K� E� Seamons and M� Winslett� An e�cient
abstract interface for multidimensional array
I�O� In Proceedings of Supercomputing ����
pages �
���
�� November ���	�

�SW�
� K� E� Seamons and M� Winslett� A data
management approach for handling large com�
pressed arrays in high performance computing�
In Proceedings of the Seventh Symposium on
the Frontiers of Massively Parallel Computa�
tion� pages �������� February ���
�

�TBC��	� Rajeev Thakur� Rajesh Bordawekar� Alok
Choudhary� Ravi Ponnusamy� and Tarvinder
Singh� PASSION runtime library for parallel
I�O� In Proceedings of the Scalable Parallel
Libraries Conference� pages �������� October
���	�

�Thi�	� Thinking Machines Corporation� Cambridge�
Mass� CM Fortran User�s Guide� ��� edition�
January ���	�

�WGRW�
� David Womble� David Greenberg� Rolf Riesen�
and Stephen Wheat� Out of core� out of mind�
Practical parallel I�O� In Proceedings of the
Scalable Parallel Libraries Conference� pages
������ Mississippi State University� October
���
�

�WMR��	� Stephen R� Wheat� Arthur B� Maccabe� Rolf
Riesen� David W� van Dresser� and T� Mack
Stallcup� PUMA� An operating system for mas�
sively parallel systems� In Proceedings of the
Twenty�Seventh Annual Hawaii International
Conference on System Sciences� pages
���
�
���	�

