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A Fuzzy MHT Algorithm Applied to Text-Based
Information Tracking

Santiago Aja-Fernandez, Carlos Alberola-Lopdember, IEEEand George V. Cybenko

Abstract—in this paper, we carry out a detailed analysis of different observers over time (in this contdrécking means
a fuzzy version of Reid’s classical multiple hypothesis tracking finding which messages deal with the same pieces of informa-
(MHT) algorithm. Our fuzzy version is based on well-known inn anqg. therefore, they should be correlated somehow over

fuzzy feedback systems, but the fact that the system we describet. Each h licati Iso tends to b .
is specialized for likelihood discrimination makes this study par- ime). Each such application also tends to be narrow in scope

ticularly novel. We discuss several techniques for rule activation. SO & few important keyword_s 5_h0U|d be carefully_ searched for
One of them, namely, thesum—product seems particularly useful and processed. These applications areas are all in need of more

for likelihood management and its linearity makes it tractable for gdvanced automatic analysis techniques given the increasing
further analysis. Our analysis is performed in two stages. First, amqount of networked text-based information available to them.

we demonstrate that, with appropriately chosen rules, our system TexTT d ibed in M1 i ft ¢ h
can discriminate the correct hypothesis. Second, the steady-state EXTTRACK, described in [1], is a software system whose

behavior with constant input is characterized analytically. This goals are to apply advanced signal processing tracking con-
enables us to establish the optimality of thesum—productmethod cepts to natural language processingxTTRACK addresses the

and it also gives a simple procedure to predict the system's problems of correlating and tracking observations of multiple
behavior as a function of the rule base. We believe this fact can ,qying vehicles reported by natural language messages that
be used to devise a simple procedure for fine-tuning the rule base . .
according to the system designer needs. The application driving are generated by multiple observers asynchronously over time.
our fuzzy MHT implementation and analysis is the tracking of  1he system has demonstrated that such problems can be tackled
natural language text-based messages. That application is used asusing relatively mature concepts from radar signal processing,
an example throughout the paper. namely the multiple hypothesis tracking (MHT) algorithm [20].

Index Terms—Fuzzy feedback system, hypotheses discrimina- The prototype accepts simple natural language messages about
tion, information tracking, multiple hypothesis tracking (MHT) al-  vehicle types and locations, correlates the messages and asso-
gorithm, natural language processing. ciates groups of messages into the most likely tracks based on
a succession of positions. The correlation procedure is solved
in two steps: first, an appropriately modified, but still classical,
) ~ Bayesian framework is used to handle the ambiguity in natural
N ATURAL language messages are present in many infQgnguage descriptions. A formal theorem shows that under very

mation processing and analysis applications. Howevegiiq conditions, the correct solution is eventually achieved. The

to-date most systems for natural language processing have bggghng step uses a fuzzy inference engine (FIE), specifically, a
used for database querying or machine translation. New aggzy version of the classical Bayesian Reid’s multiple hypoth-
more powerful text processing techniques need to be developegk tracking algorithm. Since the purpose is to model natural
and analyzed to handle other important applications thahqguage ambiguity, linguistic variables (i.egmputing with
require correlation of text-based messages such as intelligegfdsin zadeh’s terminology [24]) are a natural choice for this
analysis, computer security incidents databases, and CUStOBl?rbose. However, [1] does not include a rigorous analytical
service reporting. study of the EXTTRACK system. That work presented an intu-

These applications have several common attributes: th@ye argument for the system’s effectiveness and was illustrated
involve tracking possibly ambiguous reports generated kyih several working examples.

In this paper, we give the fuzzy MHT algorithm originally
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(FFSs). Traditionally such systems have been applied time k£ — 1). Now, each of thé\/; observations could be either
control theory so that previous research has focused on issaesew observation corresponding to one of the existing tracks,
specific to this theory. In our case, the quantities that are fadhew target that appears in the sensor’s field of view for the
back to the system are likelihoods accumulated over tirfiest time, or a false alarm due to clutter or thermal noise. The
and the consequences of this fact will be explored in detgjbal of the MHT algorithm is to effectively characterize these
in the paper. Though initially motivated byeXTTRACK, our new M observations, i.e., to classify them correctly according
study is a general and thorough mathematical analysis tofthe above three cases, giving rise to a new set of hypotheses
single-fuzzy-input-single-fuzzy-output feedback systems©% . To that end, it is necessary to build several extended hy-
for hypotheses likelihood determination. Consequently, thimtheses derived from the most likely associations of new ob-
system can be used in more applications other than just lss&tvations to existing tracks, to compute the new probabilities,
vehicle tracking. and then to prune the less likely hypotheses (to satisfy finite
This paper is organized as follows. Section |l gives a descrigtorage limitations). The probabilities of the hypotheses are up-
tion of the MHT algorithm and its fuzzy version as well as a redated recursively as follows.
view of well-known techniques for rule activation. In Section Ill  Hypothesid¥ , i.e., themth hypothesis that includes the ob-
we demonstrate the ability of tezzy MHTto discriminate the servationsZ(k), is built by means of appropriately appending
most likely hypothesis in a worst-case scenario. This is mademe permutatiord,,, (k), of the new measurements to the hy-
possible by the use of linear operators, such astine-product pothesi@ﬁ“(;ll) from the previous time. Thus
Section IV is devoted to calculate the long-term behavior of the

system with a constant input, which turns out to be a function oF — {@;HL’ 9m(k)} _ 1)
of the rule database. Our results are validated in Section V by (m)
means of several examples. Let Z* denote the set of measurements until time inskarit

We believe that the results obtained in Section IV give greggnsists of
insight into the system’s behavior, and they provide a great deal
of information relevant to the design of appropriate rule bases 7k = {Z’“—l, Z(k)}. @)
for specific applications even in the absence of data.
The goal is to obtain

Il. BACKGROUND

A. The MHT Algorithm
Reid’s [20] MHT algorithm is a well known and widely usedthat is, to calculate the probability of theth active hypothesis

Bayesian approach to multiple target tracking. It is based gﬁtt_er associating the .observatipins collected until time ingtant
deferring decisions until enough evidence is collected to ma‘@mg Bayes rule, this probablllty can be shown to _be propor-
a correct choice. MHT is implemented by explicitly storing agonal to the product of the following three probabilities

many hypotheses (i.e., possible classifications into tracks of ) k1 -

the vehicles so far observed) as possible, together with estima?gs@fnwk} x P {Z(k) ‘@l(m)’ O (k), 2* 1}

of a probability measure of these hypotheses. When a decision P {9 (k) ‘@kfl Zk—l} P { oF1 Zk—l} .4
is made, the hypothesis with the current highest likelihood is " {m)? {m)

taken to be the truth. _ _ _ ‘The last term of this equation is the probability of the parent
Multiple hypothesis tracking algorithms are typically used |2¥:0thesisp{@k—1 |Z¥=11 and is, therefore, available from

P{ey,|z"} ®3)

. . . . , 4
radar applications involving several sensors. The sensors’ prgRs previous iter(gltgon. The first factor is the likelihood of the

ability of detection is high so there is a large flow of informameasurements given an association of measurements to tracks
tion within the system. Sensors retuaportsat discrete time (which is computed by means of the information on the dy-
intervals, producing acan Reports from different scans are orygmics of the objects involved in the process) and the second
ganized intaracksaccording to a probabilistic calculus basegyctor is the probability of that specific assignment of observa-
on the dynamics of the objects being detected. A track consigtshs to pre-existing tracks.
of reports of the same underlying object. A collection of consis- |f text-descriptions (as opposed to radar sensor measure-
tent tracks is called Aypothesisaind each such hypothesis hagents) are collected, the foregoing scheme is valid provided
a likelihood. The goal is to maintain the most likely hypothesggat appropriate changes are made. The first factor of equation
bearing in mind that future reports may dramatically change tk}@) is directly used since vehicle dynamics are assumed known;
hypotheses’ likelihoods. the third factor does not need any change either; the second
To be more specific, and to highlight the recursive nature @{ctor. on the other hand, is understood asehicle compati-
the algorithm, suppose that at time instana scan consists of pjjity measurement.e., how likely it is that an observer reports
M,, measurements, which are stored in vedtgk). SUppose 4 car for example and the association is made to a track in
that before receiving this set of measurements, a number of Bich the vehicle is, possibly, different from a car (a jeep, a
pothese®};~*, i.e., adisjoint set of pre-established tracks, wetgnall van or others). The authors demonstrated in [1] that an
stored  ranges from 1 to the overall number of hypotheses g{T-jike algorithm so built, will eventually reach a correct

Iwe will only be concerned with single-input single-output systems, so théplUt!c_m ina Wor.St case scenario und_?r avery m'l_d Cond!t'on’
will be hereafter referred to as FFS. specifically, provided that the probability of reporting vehicle
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1 when vehiclei is the actual vehicle is greater than the where, the fact®); is A’ and®s is B’ are to be under-

probability of reporting any other type of vehiclewith j # <. stood as “the last object in the track under analysid’is
and the observation iB’.”

B. A Fuzzy MHT Algorithm 2) With respect to probabilityP{Z(k)|©y, ), 6m(k),
Because the inputs to the MHT application described in last ~ Z*~1} the following rules are appropriate:

section are natural language text messages, a natural alternative Rule: £ Co is Very Likel

to the Bayesian framework described above is a fuzzy MHT-like ' v Y y

algorithm [1]. The different sources of ambiguity that arise in and¢ is Almost zero,

this problem, namely, the ambiguity in the description of the thenP?® is Very Likely.

vehicles and the uncertainty in the prediction of future positions Rule: fCo is Very Lilkel

of the objects (since the vehicle dynamics are given in statistical ' v ery sy

terms) can be handled with fuzzy logic in a way that appears to and¢€ is Small,

be closer to the human reasoning. thenP* is Likely.
Itis clear, however, that a fuzzy MHT algorithm can be easily

generalized to finding associations in a set of reports that de-

scribe, possibly with some ambiguity, some sort of reality about Rule: IfCy is Very Unlikely

which previous knowledge is available. Denotedbjectsthe and¢ is Ezcesstve,

entities to be tracked, and assume some knowledge is available thenP* is Very Unlikely.

about the objects’ behavior (and thus some prediction of the fu- Fact: Cyis A’

ture states of the objects is possible). In such a scenario, the and€is B’

sources of ambiguity would be

1) ambiguity in the description of thebjects
2) uncertainty in the prediction of the future state of these ) o ) )
objects (some dynamical model is assumed known, per- whereCy is the likelihood derived from the first set of
haps only in statistical terms). rules anct is the prediction errofP* is the likelihood of
This ambiguity, inherent both in human natural language and _ the hypothesis. o _
in stochastic dynamical models, can be modeled by two lin- 3) Finally, the recursion with the hypothesis likelihood his-
guistic variables, namelyeported objec{in the case of vehicle tory
tracking such obj_ects will beuck, van, car .) a_md prediction Rule: If 1 1 is Very Likely
error (small, medium, large ).2 These two variables, together 4Pk is Very Likel
with a variable calledikelihood (the values of which are labels anarris Very Lukedy,
such asunlikely, very likely, and so forth) can be fused together then®* is Very Likely.
to create an_MHT-Iike procedurt_e by means of a tr_iple fuzzy rea- Rule: IfH*Lis Very Likely
soning, motivated by (4) and driven by the following rules. andP* is Possibl
1) Rules that play the role of probability OISE,

PO, (k)|©)5, 25} thenH* is Likely.

Conclusion: P¥is '

Rule: If O is Class;
andO, is Class;,
thenCy- is Very Likely.
Rule: If O isClass;
andQ; is Class;y1,
thenCy is Likely.

Rule: If H*—1is Very Unlikely
andP* is Possible,
then* is Unlikely.

Fact: HE is A/
andP* is B/

Conclusion: H* is ¢’

Rule: IFOLis Classy whereH*~! is the hypothesis likelihood history at instant
andO, is Class;, k.
thenCy is Very Unlikely. These ideas can be graphically represented as in Fig. 1, where
Fact: Oy is A’ the first block gives the likelihood of the association of the cur-
rent reported object with the stored object; the second block
and0; is B’ weighs this label with the prediction error, to obtain a second
label of likelihood. This second label updates the overall likeli-
Conclusion: Cy isC’ hood by means of an inference with the likelihood accumulated

until the previous time instant. As it can be seen, the overall hy-

2This prediction error must be understood as a measure of the mismatch be- T .
tween the predicted object state and the observed state. In the case of velmaghes'_s likelihood is fe(_j ba_-Ck to the FIE, so we can naturally
tracking it is a distance error. In other cases appropriate changes must be méé#ote it as th@ypothesis history
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Fig. 1. A sketch of the fuzzy MHT systerfi: prediction errorCy-: object compatibility;P,. probability of observatiorit, : likelihood history.

The key of this system is the last block since it updates all Another interesting (though still unimplemented) example
the previous knowledge coherently with new incoming obserould be the tracking of nonauthorized users on a computer
vations. As the first and the second blocks do not accumulatetwork. When a user tries to enter a machine by a certain port,
information (they work on “new entries” every time instant)a message could be sent to the tracking system, which could
the way they work is not critical, provided that probable assogiredict the next step of the user. Input patterns to the system
ations are given higher likelihoods that unprobable. But the thivebuld be some kind of user identifier, and the prediction error
block is the one which updates the system information using enuld be represented by a linguistic variable which modeled
FFS. A proper set of rules and fuzzy operations will have to ke mismatch of the “next step” prediction.
chosen to guarantee the correct update of the likelihood history.

We will demonstrate, in the worst case, that provided that te System Inputs and Activation of Rules

rule base is correctly designed, the system is able to discriminaterp,o inputs to our system have the particularity of being lin-

the most likely hypothesis. In addition, we will also prove thaistic variables, the values of which for the third block are like-
the system output is stable when the input is constant, S0 we ¢8R |abels. This obliges us to define a method for rule activa-
guarantee the correct functioning of the whole system in timg;s, with fuzzy sets as inputs.

For the sake of clarity, we illustrate the procedure of the 1o problem is posed as finding the activation of a fje
fuzzy MHT algorithm by means of two examples. First, we
consider a land-vehicle tracking application, as in [1]. Over a R;(X): If Xisa;(x), then is C;(y)
known space, we receive text information on the position of
these vehicles. The input patterns will be the description of theéhen A’(x) is input, witha; (), C;(y) and A’ (z) fuzzy sets.
vehicles fruck, van, car .). So the rules that play the role ofThe solution must be some sort of compositior gfr) o A'(x)
P (R)|0],5, 251} will be in a way that the intersection of the setg(x) and 4’(x) is

weighed to end up with

Rule: If V1 is Truck
L R;(A') = a;(A)C;. (5)
andV is Truck,
thenCy- is Very Likely. _ Several strategies can be cc_msidered to solye the abc_)ve men-
Rule: Vs is Truck tioned problem. These strategies have been caitedpolation
uie: LIS Lruc methodselsewhere [12].
andV, is Van, Definition 1 (Max—Min Method) [12], [16]: The composi-
thenCy is Likely. tionis
a;(A) = sup {fta;na' } = sup min{a;(z), A'(z)}. (6)
Rule: If V) is Motorcycle zCX zCX
andV; is Truck, This method is théviodus Tollengroposed by Zadeh [23],
thenCv is Very Unlikely. and seems to be so far the most popular method.
_ ) ‘/ cry ey Definition 2 (Sum—Product Method)Xosko [14] proposes
Fact: Viis A the following rule activation method:
andV, is B’
0(4) = [ A@aya)ds )

Conclusion: Cy is .
o o o ] for z a continuous variable. Its discrete version can be trivially
The prediction error in this application will be the absolutga\ritten as
difference between the predicted and the reported position of .
the vehicles. This measure could be fuzzified, so the input to aj(A) = — Z aj(z) A (2;) ®)
the system will be a label such Esge. K p
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with K a normalizing facto?. This method, as opposed to the
former, takes into account the area enclosed under the whole vu U M L VL
product of the two fuzzy sets, and not only the maximum value
of the product. Kosko's operator is linear which makes analysis
far more tractable, and it is the basis for SAMs procedures.
Definition 3 (Max—Product Method) [5]:An alternative to

the foregoing proposals is a hybrid method expressed as ; ; y !
0 05 1

! 1 !
a](A ) K max{a] (a:)A (a:)} (9) Fig. 2. Components of the linguistic varialilikelihood
This method seems to inherit the advantages of performing an
intersection with a product, but does not consider the whole aree
under the intersection; the max operator will greatly reduce the
tails that may show up in the output fuzzy set.
Definition (Sum—Min Method):A different possibility is to

calculate the area under the intersection of the fuzzyséts

————e
and A’(z), as follows: l I I*i\q
1
(b)

a;j(A") = % Zmin{aj(xi), Al(z)} (10)
i (@
or, for a continuously valued variable

a;(A) = / min{a,(z), A'(z)} dz. (11)

I1l. HYPOTHESISDISCRIMINATION CAPABILITY OF THE Fuzzy
MHT ALGORITHM

A fuzzy MHT system must be able to associate a greater like-
lihood to the actual hypothesis after enough information has © @
been collected. In this section, we demonstrate that, if the rufig. 3. Anillustration of an ambiguous situation. (a) A track associated to a
; ; ; ingle vehicle exists. (b) A new observation from the same vehicle comes up.
bgse IS. corregtly deS|gr_1ed, the syst(_em prqposed n [1] an(.j ger?c Hypothesis 1 (right): The track is enlarged with the new observation. (d)
alized in Section II-B will correctly discriminate the most likelypypothesis 2 (wrong): A new track is created. Two vehicles are now assumed
hypothesis versus others. As we have seen, the third blockde present in the scenario.

Fig. 1 is in charge of making this discrimination.

Denote byP* the likelihood label associated to theth hy- In our case
pothesis that uses the data received at time indtaanhd by
HE=1 the accumulated likelihood associated to this hypothesis Ay=VU<A < - <Ay =VL.
until the previous time instanH* is the updated likelihood his- .
tory. The fuzzy MHT algorithm should guarantee that the accu-

The variableikelihood will be modeled as a linguistic vari- Mulated likelihoods of two hypotheses are ordergfl > H}
able, sayprobability, defined by means of several fuzzy setBrovided that at time instaritthe hypothesi®? is more likely
(likely, very likely, unlikelyand so forth) [12] witpseudotrape- than hypothes@’;_. In order to demonstrate_ that thls_ IS act_ually_
zoid-shapedPTS) membership functions [25], as is shown i€ case, we consider a worst-case scenario (see Fig. 3), inwhich
Fig. 2. two hypotheses only differ in the probability of one assignment.

P* is then a fuzzy set with membership functipp: (x) 1) At time instant¢ the system has one hypothesis in
and H*~! is a second fuzzy set with membership function =~ memory, with some likelihood label. Assume that,
tix—1(2). In order to avoid excessive notation, we will referto ~ Without loss of generality, the likelihood label is the
the membership functions with the same symbol as the fuzzy ~maximum, i.e. H'™* = Ay,

set. 2) Atthis time, and observation comes up. Assume two dif-
According to [25], if Ai are consistent and normal ferent associations of the observation to tracks are pos-
fuzzy sets inl/' C R with PTS membership functions sible, giving rise to two possible hypotheses.
Ai(z) = Ai(x; ag, by, ¢, d;) (@ = 1,2, ...N), then there a) Hypothesisgd!, from which a label of likelihood
exists an orderingiy, iz, ..., ix}in{1, 2, ..., N} suchthat Pl = Ay is calculated (by the two first blocks
in Fig. 1), with A, the maximum fuzzy set of the
Ajp <Ay << Ay (12) linguistic variable, i.e.yery likely.
3In subsequent sections, we will drop thein the notation unless necessary, b) HypOtheSiSGt' from which a label of likelihood

i.e., we will write a;(A") = (1/K) S a;A’. P} = Ay is calculated, withd;, # Ajy.
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3) Subsequent observations will give rise in both hypothesesA further step needs the following.
to the maximum value of likelihood, i.eP/+* = Pt = Proposition 1:If A; are consistent and normal fuzzy
Apy with i > 0. sets that give rise to a complete partition @f C R, with
Fig. 3 depicts graphically the problem statement for the caBdS membership functiond;(z) = Ai(z; a;, b, ¢, di)
of vehicle tracking In Fig. 3(a), a track associated to a singlél = 1, 2, ..., N), each membership function, but those of the
vehicle exists H*~1); for instance, observations through timemallest and the greatest set, will intersect one and only one
of atruck. Suppose a new observation of the same vehicle corfiggmbership function in every extreme.
up [Fig. 3(b)]; however, due to the ambiguity in the description Remark 1: Each fuzzy set intersects with two sets, each at
and the right turn of the vehicle (which is difficult to predict).every side of the maximum of the set, but the sétsand Ay
two hypotheses are sensible to be considered. will only intersect one fuzzy set.
« Hypothesis 1©!): the new observation is considered to Proof: Since we are dealing with normal and consistent

come from the same truck, which has made a right tufHZzy sets each set will only intersect with one set because, oth-
[Fig. 3(c)]. The track is enlarged with this new observa€rwise, the set would have a nonnull value in the normal subset

tion. of the other set, and thus the property of consistency would not

« Hypotheses 2%): the new observation is in this casdold. In addition, since the partition is complete, two consecu-

considered as the first report of a second vehicle whidly€ Sets should intersect. _ .
has just appeared in the field of view of the reporter. No In the demonstration, we assume, without loss of generality

information is assumed to be given about the truck in thi§at Ax = Aa/—,. If the property holds fordy = Ay, it
time instant [Fig. 3(d)]. will necessarily hold fotd i < Apyr 1.

. i, .
Theorem: We state that the fuzzy MHT algorithm is able to. Ford@l’l since pl).rop.osnmn 1 holds, the following table of ac-
discriminate that tivated rules applies:

HE > HE V>t aj(z) | bi(z) C; Rj = a;(Am)bi(Am)c
Proof: Our demonstration will have two stages. The first A, Ay Cr cr
step shovys that we can state thgt > HE. The second step is Ans Ay Cry Sierr
an inductive method derived from the former, and allows us to
order the hypotheses at arbitrary future time instants. M-1 Am Crir berrn
Apr—1 Anva Crv §fery

A. First Stage: Analysis at Time Instant
V\(q'th ¢r, ¢rr, - .. the centroids of the fuzzy sets;. With respect

Consider a reasoning with a SAM (as proposed by [13] an . b .
[14]) inference engine and teim—producmethod for rule ac- to the antecedent composition, Proposition 1 allows us to write
tivation. We have chosen these methods because they both are =1, ifi=jy
linear, making a formal study easier; furthermore, we follow the ) e e
conclusions presented in [1], where the results using Kosko's Aiodj=q =8 ff |f ‘{' =1 (17)
operators were similar to those of Bayesian case, versus the =0, iff|i—j|>1
max—min approach which had the poorest results.

For rules as the following: with 6; < 1.Inour caseAy; o Ay 1 = 6 and Ay o

Apn_2 = 62, Where bothé; depend on the actual activation
R;:If Hy, Sisa; and Py isb;,  thenYisC; method (max—ml?, sum product, and so forth).
Similarly, for ©4
we can write that at time instaht

a;(z) b;(x) Cj a;(Ar)b;(Anv-1)c;
H, = Z Cja; (HIIZZl)) bi(P) (13)
J A A Cr d1cr
which can be further expressed Ay Ayt Crr crr
1 Ap—1 Ay Crrr §fcrrr
k _ _— . k-1 . pk
Hm = K, zJ: © (Z a]Hl(m)) (Z bij) - 44 Av—1 | Am- Crv drery
A Apr_ Cy bacy
According to our problem statement, the likelihood at time M AM ? ' 5 62 '
instantt — 1, H'™* = Ay, so, according to (14) we can write M-1 M-2 Cvi 102¢vI-

1 The crisp likelihood value will be obtained by the method of
Hi = X Z C; (Z ajAM) (Z bjAM) (15) centroids, i.e.,
J

Z aj(A’)bj(B’)cj
1 ropny
Hy = K Z Cj (Z %'AM) (Z bjAK) - (16) o4, B) = Z a;(A)b;(B') 4o

and
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which in our case results in base. If we assume the rule base is properly designed, we can
o= + 61e17 + b1 + Siery (19) state
(1+61)? HMY < HITL (26)
for H} and Q.E.D.
] + 611 + 611y + b2cy + 61620y 1 + 8crr (20) B. Second Stage: Likelihoods at Arbitrary Future Time Instants

(14 61)(1+ 614 62) The problem is now posed as follows.

for H. Mild restrictions are needed in our rule base to guarantee * The two hypothese®] and©} have accumulated likeli-
correct discrimination. Since our system is a likelihood compar-  hoodsH{ and Hj, respectively, and we have shown that
ison system, greater inputs draw greater outputs. Specifically, Hj < Hi. ‘ ‘
output for inputsA,; and Ay, should be greater than output * Suppose now thaP{ ™ = Pi** = Ay, Vi > 0, e,
for inputsAy;,_1 andAy;_1. When inputs arel,; and Ay, _; that subsequent observations causes the maximum output
we can only state that the output will be less than or equal to the  in the second block of Fig. 1 for both hypotheses.
output for inputsd ;; andA ;. These restrictions give rise to theOur goal is to demonstrate thAty < Hf forvVk =t+1t, > t.
following relations:cr > crr, ¢r > crrr, ¢r > crv, ¢r > ¢y, This can be easily done by simple induction, using the result of
cr > eyroerr 2 ey, eqr > oy, err > oyr, e > cpy,  the previous stage.
crir > ev, crrr > evr, ey > evr, andey > ey Defining the following parameters:

Centroids can be compared by writing

Py, = Z aj Ay
(cr+ S1crr+ Srerrr + 85erv (1 + 61 + 62)
= P = b; A
@ (1+61)2(1+ 61 + 62) by = 2 i
_ N (21) M, = 3 ajdw-i 27)

(14+61)2(1 + 61+ 62)

the accumulated histories at time instant ¢; are
(crr+éicr+8icry +dacy +6182cy 1+85crrr)(1461) !

Co —
’ L+ 8)2(1+ 61 + &) HfM =S R,
= = (22) R
T (1462046 + &)
If we calculate the difference of the numerators ’ Z Ci, Z % Z Cihy,
J J
Ny — Ny =(cr —crr) + 61(errr — erv)
+8a(er —ev) + 61 (err — er) ' Z @i Z Ciby, Lo, o] (28)
+ 6162(crr — ev +errr — evr) 1 ’
+ 6?(CIV - Crn) + 61262(CIV - Cvr) H;—Hl = K—tl Z Cijj
J
and making use of the relations just mentioned
R . P, p P,
(cr —err) 20 61(crrr —erv) 20 EJ: Citt, Z “ EJ: i,
62(C[—Cv) 20 (5%(0]1—01) S 0
6162(0[} — Cv) >0 6162(0[}[ — CVI) >0 Z a; Z CijjMa,j - (29)
8 (crv —err) <0 6362(crv —evr) 20 (23) J

which can be written recursively as

1 _
i H™ = > Cih, (3" amrrn)
(cr —err) > 6i(er — crr) J

3 L 1 —
é1(errr — crv) 2 67(crrr — erv) (24) Hyth = o 2}: C; Py, (Z a; Hyt 1) . (30)

sinced; < 1 andéd, < 1. Therefore, we can write

we observe that all the elements are positived§it;; — c;)
andé?(crv — crrr). However, the following inequalities hold:

From these two equations it is obvious thatiif < H?! holds,

(cr —cr1) — &6(er —err) 20 thenH, ™" < H{™" must necessarily hold. Q.E.D.
Silerrr —erv) — 8 (crir —erv) >0 (25) The behavior of the system wheqn — oo in (30) is not
obvious; common sense dictates that if more observations with
and consequentlyV; — No > 0, or equivalentlyg; > co. the greatest likelihood are given to both hypotheses, the overall
The equality is obtained whety = ¢;; = ¢y andejr =  likelihood of both hypotheses should increase, they should be

crv = ¢y, Which is avoidable by a proper selection of the rulprogressively closer to the maximum and, consequently, the
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differences between both should decrease. In the next section,
accomplish such an study and we obtain closed-form expressic
of the long term behavior of the system when the input is hel
constant. Interesting comparative conclusions can be drav I
about the methods used for rule activation.

CONTROLLER U, PROCESS X, MEASUREMENT Y,
K P H

Fig. 4. Closed-loop system (Tong).

IV. SYSTEM ANALYSIS FOR A STEADY INPUT

As previously mentioned, the key of the system is the third % + e FuzZY "
block in Fig. 1, which is known as an FFS. This block is critical - CONTROLLER
since it performs the accumulation of likelihoods in time, so
it is the responsible of assuring the long term behavior of the
algorithm.

FFSs have been studied in the literature. Some brief back-
ground material follows. Fig. 5. Fuzzy control system (Chen-Tsao).

PLANT

A. FFS fy |  Fuzzy Relation Y=
FFSs have been traditionally used as controllers, where X, A
they have demonstrated their effectiveness in a myriad of
applications. The stability of these controllers is usually studied
by nonlinear analysis techniques, such as Lyapunov’s method z"
[9], [14], [17], which give a confidence of the reliability of the
system, but they do not characterize its recursive behavior. Sc Xk
the design of these controllers has been traditionally dmhe
hoc, due to the difficulty in developing a theoretical basis thdt9: 6 Single-input-single-output fuzzy dynamic system (Kang).
mathematically characterizes that behavior.
There have been several interesting attempts to rigorously forBroadly speaking, the key in [4] is to map the fuzzy system
malize FFSs. The first one is due to Tong [22] in 1980. The FRto a nonfuzzy system so that its behavior can be better un-

Xl

proposed is the one shown in Fig. 4. derstood. This way, the global behavior of the system dynamics
The author obtains a theoretical description of the closed looan be extracted by Hsu’s method. The problem of the accumu-
response as a function of the initial state, specifically,; = lation of fuzzinessn each iteration is circumvented, since the

Xp o S;, whereo is a mapping defined by max—mincompo- fuzzy part is restricted to the transformation from one domain
sition. The transfer functiois; depends on the constant inputo the other. However, this method can only give an approxi-
U, and on the system componenfs,(P and K), which are mate prediction of the behavior of the system; furthermore, the
defined as fuzzy relations. Due to the difficulty to solve someell-to-cell method cannot be applied to all dynamical fuzzy sys-
complex relational equations to fing, the problem has only tems, and onlyintuitive criteria to find out which systems fit
solution under certain conditions in which the author forces ththin this framework are given in [4].
controller K into some desired form. Kang [11], in the early 1990s, proposed a systematic design
Despite the fact that the result is not directly applicable tmethod of linguistic fuzzy controllers. His control system is
others systems in use, it is clearly a first approach to a rigorostsown in Fig. 6.
characterization of the FFS. When the inputr, is suppressed, the author can express the
An interesting further effort in this direction is made by Chesystem output with the recursive equatidih,; = A% o X,
and Tsao in [4]. The authors state tlthé main cause of the (the matrix composition is not a power, bukth composition
failure of FFSs is due to the use of the max—min operdftbis of the formA* = Ao Ao --- o A), with A a transition matrix
operator has the side effect of flattening the fuzzy set membevrhich depends on the rule set and on the fuzzy sets membership
ship functions. When a FFS is described recursively, the acdunctions. This matrix has a size x m, beingm the size of the
mulation of this effect makes the monitorization of the systeriscrete fuzzy sets considered. The operatak—miris always
evolution an impossible task. To overcome this problem, the aused. The author states that if there exists a positive integer
thors propose the use of concepts of nonlinear system analylism which A”t! = A™ then X, reaches a steady-state, i.e.,
specifically, thecell-to-cell mappingleveloped by Hsu [10], to X,,;; = X,,. The author forces a fuzzy relatidd (not indi-
analyze the global behavior of nonlinear dynamical systems.cated in Fig. 6) between the two inputg,and X, to guarantee
The FFS used by the authors is represented in Fig. 5, anthié system stability.
has been used as the paradigm of fuzzy control by others [7]Although the three papers give a good theoretical basis for
[17]. The input is basically the difference (the error) betweedhe analysis of stability of FFS, they are not suitable for our
the output of the plant and a control signal. The input—outpptirpose. The first two give only an approximate solution of the
relation is expressed recursively by, ; = f1(Y;), with f; a system behavior, and the stability relatiéh proposed in the
relation derived from the rule set. third method does not fit our system. Therefore, in next section
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we develop a different and complete steady state analysis, buf\s we use a linear activation methoslim—produdt the re-

that will make use of some of the ideas previously proposed.lation between coefficients? and/3! will be also linear as fol-
Further information on the area of fuzzy control and FFSs céows:

be found in [2], [17], and [18]. Other sources of introductory . o 0 o o

material and related topics on FFS are [6], [7], [15], [19], and Bir = Fa(BY, B3, .. B = railB]

[21]. i

, Bricy = Fa—1(BL, B3y s BY) = D w1l

B. The Fuzzy MHT Architecture as a FFS 2
As we have seen, the third block in Fig. 1 is a FFS, similar

to the one proposed in [11] (Fig. 6). However, our system has a 1' o .0 ' 0 0

number of particularities that should be taken into accountin any P2 =f2(BLs B2 s Bu) = Z T2l

analysis. First, it has a single input (tlieelihoodlabel) but two ’

entries to the FIE: the system input, and the accumulated history A1 = f1(80, 83, ..., B%) = > _ rf).

of likelihoods that comes directly from the feedback. Second, i

the input and the output of this block are all fuzzy sets. We can generalize the foregoing expression to any time instant,
According to [4], where the authors state thia main cause provided that the input is held constant

of the failure of FFSs is due to the use of the max—min operator

we have built the FIE upon linear operators, such as SAM and gk, = 7, (581, b=, ... gty = Z Bt
sum—productas described in Section Ill. This eases consider- i
ably the process of theoretically describing the system behaw%h1 :fM_l(ﬁ{cfl’ 35717 o jkil) _ Z 7,(]\4_1)#3;&‘71

Furthermore, as we will show in Section V, teem—product -
is the only method that gives an acceptable response from the
system.

By =F(BF L B5 Y B ) =D it

We will use a similar paradigm as others previously reported /3{« :fl(ﬁ{v—l’ 35—17 s 3}’&—1) - Z mﬂf—l_
[11] (Section IV-A): we will keep an input constant and we will

study the system output as it evolves in time. We will search_a . . . .
These linear relations suggest that a transition métr{as in

recursive input—output relation and we will end up with a tran . )
sition matrix between states. A composition of the matrix gives1]: Put here we use linear operators) can be defined so
(85 Bh—y st =8yt st st

the output at arbitrary future time instants, so, at infinity, the
steady-state behavior will be obtained.

As we have previously done, we will consider the linguistic (32)
variable likelihood, consisting a¥/ fuzzy setsd;, Az, ... Ay . .

: ' . X Ve . Proceeding recursivel
with a normal PTS membership function, and the sets constitute g y

a consistent partition. If we use the SAM philosophy, at tim%]@ ge_ g T =M A, By A1 (33)
instant, say 0, a hypothes#®’ will have a likelihood given by

C. Analysis for a Steady Input: General Case

%

1 Matrix €2 is diagonizable, since it is the matrix of a system for
HY = ?(/3?\4AM + 8% 1 Am_1+-+P54,+8%4,) (31) which a solution always exists. So, if we write

with 39 a set of coefficients which depend on the rule activation QF = BA*B™! (34)
method, and¥ is a normalizing constant which turns out to be . _ . . . .
K = max; {3°) with A a diagonal matrix (the entries of which are the eigen-
The system output at time instant 1 for a given input can lyglues of matrix?) (33) becomes
wen By B - BF1T = BAMBTEY, Byl R
Hl = E(ﬁ]lwAM + By_1Av-1+ -+ BaAr+ Bl AL (35)

where the coefficients depend on the rule activation metho‘ﬂ?d the output crisp value is easily found as the centroid of the

The coefficients3? will be function of the coefficients in the T4Z2Y S€t
previous time steg? 0= [ear -+ e @ |BA*BUBY, A, -
Bar = (BY, B3, .-, Bir) [1 -+ 1 1IBARBZBR, Ay A"

By = Faaea (8% 8. .., A3 (36)

: where thec; are the centroids of the fuzzy sets.

Lo a0 o The problem now is to calculate the limiting value of equation
By = 2B, B2s -, Bar) (36) whenk — co. To that end, thpower method for the dom-
Bt =08, 89, ., By inant eigenvalug8] can be readily applied; assume the largest
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eigenvalue in matrix2 is located at théth row of matrixA, i.e., matrix between the system output at tithand;j + 1, defined

[Aviax] = |An] > |Ap], Vp # k. We can write (34) as in (32)]. Note that the dependence W,HEI has disappeared, i.e.,

there is not any dependence on the initial state.
bu b o b Several conclusions can be drawn from (39).

§ biz b2 e b2 | « The convergence value of the system with a steady input is

Q" = h independent of the initial system state, and it only depends

on the input value and on the rule base.

bine banvr oo bum  The convergence value is a weighted sum of the centroids

Ay k of the rule base. The weighting coefficients are the compo-

</\_h> nents of the eigenvector associated to the maximum eigen-

X value of the system matrix. Moreover, these values depend
<ﬁ) on the rule activation method applied. Therefore, for a
An given data set we will obtain different convergence values
according to the activation method.
Equation (39) is, in fact, the operation that calculates a cen-
1 troid from the involved fuzzy set. This lets us state that this is
the centroid ofH,, = Zj bvax; Arv+1—;. Consequently, we
can state that the steady-output fuzzy set of our FFS with con-
<)\m ) K stant input is

An
' Hoo = BigA1+ -+ 057 A1 + 877 A (40)

1o bor e Uy
big by o0 Vo with 37° the components of the eigenvector associated to the
(37) largest eigenvalue of the system matfix
Finally, we can conclude that we can knawvpriori the state
Vi Uy - Yy that the system will converge to with the only knowledge of

o _ ~ the rule set. Conversely, this result enables us to fine tune the
As can be seen, as— oo all the entries in the diagonal matrixyyje set so as to converge to a desired state when the input is

tend to zero, but the one in tfigh row. Therefore, after some he|q constant. To further illustrate convergence, we consider a
algebra, the centroid turns out to be particular case.

M
b 2 U BYi1 D. A Particular Case: A Three-Set Space
=1

M We study the case of the linguistic variable likelihood with
bra S b/ihﬁ?\l+i71 three va_Iu_e_s41 < A_2 < Ag e>_<pressed in an increa_sing order

i=1 of plausibility. For simplicity, since normal and consistent PTS
fuzzy sets are considered, we will assume that

[em -+ e cl])\;‘;

; %b’/}o =1, ifi=y
hM | i Mi—1 ) ) _ ol —
Cr = ==l _< (38) Ajodj=q =0 1 I{ {I =1 (41)
b ; Vi Biio =0, ifli—jl>1
", The history at time instant 0 will be
buz 32 VinBgiv
(1 - 1 | = HO = Agf + Apfp + A0,
We use the (fairly strict) set of rules shown in the first three
Mo columns of Table I. We also assume the input is constant and
i bran El binBrrsi-1 ] equal toAs; with this input, every rule is activated as shown in
] the last column of Table I. The activated rules give the relation
1.e., among coefficients shown in Table II; matiikturns out to be
M
> cv+1-j)bnj 1 6 0
Cr = J=1M— (39) Q=1]62+6 (1+6* (1+6+6)|. (42)
> by 0 82 )
j=1

] ) Centroids are calculated as in (36)
with ¢pr41—; the centroids of the output space fuzzy sets and

b, = byax = [bni---bua]? the eigenvector associated to
Amax [remember thaf; are the eigenvalues of the transition

[63 Co Cl]BAkB_l[ﬁg /38 /3?]T
[1 1 1]BARB=YES B A"

Cy = (43)
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RULE BASE FOR THE EXAMPLE (%iEIE_ELEIFT COLUMNS) AND ACTIVATION OF
RULES WHEN THE INPUT IS A5 (RIGHT COLUMN)
aj b |G R;
Az As | As A3(B + 559)
A3 Ax | A2 Az(B3 +6B3)6
A; A | A 0
Ay As | A | As(8B3 + B3 +4pY)
Ay Ag | Ay | A2(8B8 + B9 + 8B7)6
Ay A | A 0
A A;s | A2 Ax(BY + 668)
A A | A A1(B) +6p3)8
A A | A 0

TABLE I
COEFFICIENT RELATION

B = B+
Bl = BY(26+82) + BY(1+26+6%) + BY1+6+42%)
Bl = B2+ pY8

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Unlikely  Probable Likely

Fig. 7. Fuzzy sets of the linguistic variable likelihood.

The behavior of the system is as shown in (39). According to
(40) the output fuzzy set can be written

H.. = B5°A; + 355 As + B° A3 (49)

with 52° the components of the eigenvector associated to the
largest eigenvalue of the system matix

In order to show the goodness of fit of equations (48) and (49)
consider the three normal PTS fuzzy sets shown in Fig. 7; the
system inputis held constant an equal to the maximum fuzzy set
in Fig. 7. We will consider two initial states, namely, a maximum
and a minimum likelihood.The evolution of the two cases [rep-
resented in dashed line in Fig. 8(a)] has been calculated by sim-
ulating a SAM system with a sum—product procedure for rule

For our steady input we can write (44) as shown at the bottoggtivation; the solid line in the figure shows the application of
of the page. The limit of the foregoing expression can be calcyy ) for different values of;, for the two initial states. The final
lated by analyzing the asymptotic behavior of each of the matfjxiting value, which analytically turns out to be 0.5927, coin-

eigenvalues. After some algebra, the behavior of the eigenvaliueg, \yith the two simulated cases. Convergence is achieved both

IS

; 3
klim PLE klim <1 + (1 + \/5) &+ <1 + £> §2

2

7 k
———E+0o(H | = 45
Jim Ay = Jim (6 — -6+ 0 =0 (46)

lim )\’?f: lim <1—|— (1—\/3)54_ <1_£> 52

7 k
——d3+064) =0 47
5 oY @7)

and, consequently

lim ¢, = Pt cabiztcibis (48)

k—oo bi1 + b2 + bis

4This expression has been obtained setfifig= 37 = 0 for simplicity, since
the limit does not depend on the initial state.

in terms of centroids and in terms of the whole output fuzzy set.
Fig. 8(b) shows the output fuzzy set after 300 inputs (dashed
line), and the output fuzzy set calculated with (49) (in solid line).
As can be seen, the match is virtually perfect.

V. A COMPARISON OFSTRATEGIES FORRULE ACTIVATION

As our foregoing analysis has highlighted, the position of the
output centroid depends on both the rule base and the method for
rule activation. In this section, we will show that the method for
rule activation plays a critical role in a FFS applied to likelihood
discrimination.

We model the linguistic variablikelihood as a five-valued
variable, the values of which akéery Unlikely, Unlikely, Pos-
sible, Likely, Very Likelywere all of them are consistent and
normal fuzzy sets with a PTS membership function (see Fig. 2).
These sets give rise to a complete partition. The sets are ordered
asVery Unlikelybeing the smallest anery Likelythe greatest.

SFor this second case, (48) does not hold, but only in the limit. However, only
trivial changes in the expression are needed to make it¥iéld

Ck

_ APV (e3biy + cabia + c1biz) + M5B 5 (cabar + cabao + c1bag) + Nsbi3(cabar + cabza + c1b33)

Nebl (bi1 + bro + bis) + Ns¥ 5 (b1 + bao + bag) + Nsby 5 (b3t + bao + bss)

(44)
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TABLE 1l
ot RULE SET FOR THE Fuzzy MHT
o HE-'\PEIVU| U {P| L |VL
o vu VUu|VvUi{Uu| U} U
o U vu|(vuoiju, u | U
. /f P U|U|P|P|L
N " J L U|U|P| L |VL
@) VL U | U |L|VL|VL
* sum-product sum-min
4] R 1
¥ 08 08
osp 0.6 0.8
o4 0.4 04
* 0.2 0.2
o 0 02 04 06 08 1 % oz o4 o5 o8 1
’ " max-min max-product
(b) ! !
Fig. 8. (a) Centroid positions as a function of time. Solid line: analytical results o8 o8
[ (44)] of C, for the values ok shown in the horizontal axis. Dashed line: results o6 06
after simulation. (b) Output fuzzy sets for the example. Solid line: (49); Dashec
line: simulated results. 04 04
0.2 0.2
For simplicity, we will use the following notatiord/ U/, U/, P, %oz os o6 g8 1 % oz o2 o8 o8 1
L,V L. ThereforeVU < U < P < L < VL. We will use the
set of rules shown in Table Ill, taken directly from [1]. Fig. 9. Output fuzzy sets for each of the four activation methods.
As a previous example, we have entered the inpay
Likely and Possibleto the rule base, and we have made the TABLE IV
inference process with each of the four methods for rule DEFUZZIFIED VALUES USING THE METHOD OF CENTROIDS

activation proposed in Section II-C. Fig. 9 shows the output
fuzzy sets. Table IV shows the defuzzified values with the Meth°d| 5P | SM | M-M | M-P
method of centroids. Value l 0.7279 | 0.7129 I 0.6492 ‘ 0.7069
The figure shows that theum—producimethod draws the
least-significant side tails off the main lobe. This is due to the
fact that the product operator for the intersections makes valueslt) Maximum:The input will always be the maximum label
smaller than one decrease, while when the maximum value of  Of likelihood (say, the labeVery Likely. The output cen-
the intersection is unity, its height is held. This gives rise to a  troid as a function of time will be represented with a cross
fuzzy set that is very concentrated about its maximum value,  (+)-
and, consequently, the defuzzified value is fairly close to the 2) Maximum After Medium:An intermediate label of
maximum. likelihood (say, labePossiblé starts the procedure, and,
The case of the max—min operator is quite the opposite: the ~ thereon, maximum inputs will be fed into the system.
fuzzy output for the max—min operator is “fuzzier” (i.e., there ~ The output will be represented with a dashed line.
is a greater dispersion about the maximum value of the set) and3) Maximum After Minimumin this case, a/ery Unlikely
will be progressively farther from the original values of the lin- ~ fuzzy setis input, and thereafter, as before, the inputs will
guistic variable. Indeed, the output set will have nonnull values ~ be maximum. We will represent it with a solid line.
in more points with this method than with the other methods, Output centroid values as a function of time are shown in
and this will produce a shift of the defuzzified output value toFig. 10 for each of the four rule activation procedures. Itis clear
ward the average of those values. The other two operators stb@t there is a convergence in all of the four cases, but there is a
intermediate behaviors. clear difference both in the limit and in the time instant at which
With this previous knowledge, we will monitor the systen§onvergence is obtained.
behavior (i.e., the behavior of the third block in Fig. 1) by means < For Sum-producfFig. 10(b)] the limit value is 0.9, which
of three illustrative cases whose labels and descriptions are as lies in the range of the lab&lery Likely In addition, this
follows. procedure reaches a steady state before any other. Also,
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Fig. 11. Output time evolution for the second rule set. (a) Max—min. (b) Sum—product. (c) Sum—min. (d) Max—product.

the output for the constant-input case (line with crosses) tails out of the main lobe of the fuzzy set. In the case of
is fairly constant as well. themax—mirprocedure, the centroid at steady-state lies in
« In the three other cases, the situation is very different: the
convergence value is some intermediate value in the al-

the range of the labétossible For the two other methods
lowable range. This is due to the importance of the side

[Fig. 10(c) and (d)] results are far from the maximum as
well.
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TABLE V
STRICTER RULE SET FOR THE Fuzzy MHT

[1]
H\P|VU|U| P |L|VL 2]
vU |vU|vu|Vvu|Uu| U @l
U |vulvu|u|u|U a

VU|U | P |P
U|lu|P|L|L 5]

VL |U|U|P|L|VL

[6]

7
We have repeated the aforementioned experiments for aE]

stricter set of rules (see Table V). The outputs are shown in
Fig. 11. 8
The results in this case confirm the former. Indeed, since rules
are now stricter, i.e., unlikely labels have greater weights, sidel]
tails get higher and convergence is achieved much faster thaiy,
in the previous case (note the difference in the time scale in
Fig. 11). The results also show that we can calculate a dynam[&ll
range in which all the output values will be encountered. The
range, as many other parameters we have described in the pagéd]
depends on the rule base and on the activation method used. |13
These examples show clearly that then—producimethod is
the only suitable method for our application. Since we are man4]
aging likelihoods, we are interested in maintaining a maximuny,sj
output when the input is maximum. Because of the influence of
the side tails, the max—min have a deflection to middle value§®!
when the number of iterations in the FFS is high. The result of17]
using this operator will be a growth of the uncertainty for long
tracks. [18]
[19]

VI. CONCLUSION [20]

In this paper, we have presented a thorough analysis of a FF[§L]
that implements a fuzzy version of the well-known MHT Reid’s
algorithm. An important result in the paper is the demonstratior22]
that, under very mild conditions, the fuzzy MHT algorithm will [23
necessarily be able to discriminate the most likely hypothesis.

In addition, a second important contribution of the paper ig24]
the analytical characterization of the FFS as a function of time,,;
and, in particular, its asymptotic behavior when the input is hel
constant. The importance of this result is twofold.

1) Since the asymptotic behavior is a function of the rule
activation method, a designer can choose the method that
matches his/her needs. In our case, in which we have dealt
with probabilities, we can conclude that them—product
methods clearly outperforms the others. However, dif-
ferent applications may prefer other methods.

2) The asymptotic behavior is also a function of the rule bzi!

itself, an analytical fine tune of the rules can be devis

with our closed-form expressions. This issue is an inte

esting effort to be considered in the future.

As a concluding remark, we want to highlight the impor; s
tance of the linear operations and them—productctivation
method to analytically characterize FFSs. Other types of ope|
tions make this analysis far more difficult.
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