
An Economic CPU-Time Market for D'Agents

Ezra e. k. Cooper, under the direction of Bob Gray

June 2, 2000

Abstract

A usable and eÆcient resource-management system has been created for

use with D'Agents. The software dynamically negotiates a price rate for

CPU time, using the competitive bids of mobile agents that o�er currency

in return for fast computation. The system allows mobile agents to plan

their expenditures across many hosts while minimizing the time needed for

their tasks. The ability to price CPU time opens the door for service owners

to be compensated for the computation consumed by agents and provides

an incentive for servers to allow anonymous agents. We discuss the the-

oretical background which makes a CPU market system possible and the

performance of the D'Agents market system.

1 Background

1.1 Mobile Agents as a Paradigm for Distributed Computing

In recent years mobile agents have been proposed as a new approach to

distributed computing. In contrast to symmetrical modes of parallel pro-

cessing, where all processors are given the same program to run and the

job is split between them, or multi-threaded systems, where threads can

be scheduled on arbitrary individual processors, the mobile-agent paradigm

gives the software designer explicit control over the location of execution of

each thread of control.

Advantages of this approach are various [9]. The largest is that agent

technology allows the (small) program to come to its (big) data across a

network. This means that organizations can make large databases available

and let users access this information with their own programs, without re-

quiring users to download the entire database in order to do such processing.

Present-day WWW search engines make a large body of information avail-

able but only through a consumer-oriented search interface; other kinds of

queries are impossible. Were these services to adopt agent technology, enter-

prising and curious individuals could write programs to extract other kinds

of information, without needing a copy of the database on their local work-

stations. Serving more customers' needs would presumably o�er greater

revenues for organizations with large databases, and at a small expense.

Yet for agent technology to be useful, we need a way to manage anony-

mous agents' resource usage, particularly CPU time, and a way to compen-

sate agent servers for the use of these resources. A good system of com-

pensation would automatically adapt to changes in demand, rather than

requiring the server owner to set a price a priori, and it would allow agents

to buy quicker execution with more money.

1.2 Dynamic price determination

We value a computational resource by the rate at which a program can use

it to take certain kinds of steps. In a good pricing system, the price per

unit of computation will be determined automatically, driven by supply and

demand.

The model discussed here was developed by Jonathan Bredin as part of

his Ph.D. research at Dartmouth College [2, 3]. Here, in return for higher

bids, agents are given a greater share of the processor and hence execute

faster. In this model, an agent declares a bid function which, given the rate

at which other agents are willing to pay, determines the rate at which the

1

agent itself is willing to bid. Larger bids then allow an agent to execute

more quickly and smaller ones force it to execute more slowly.

The model [4] used in the D'Agents market can be summarized as follows:

an agent i declares to the host a bid function ui = gi(�); this function returns

the rate ui at which the agent would pay the server in a situation where the

total of all agents' pay-rates were �; it makes this o�er in return for ui

�
t of

every t of that server's scheduling quanta (see the discussion of proportional-

share CPU schedulers below). Given this bid, however, other agents will

want to change their bids. An agent can either step up its bid to get a good

fraction of the CPU, or it can step back, unwilling to pay high rates. The

algorithm used in the D'Agents market system �nds an equilibrium set of

bids where no agent wants to change its bid because of the others.

This bid function trades o� expense against speed of execution: for low

�, the agent will o�er a bid almost as large as that �, since the price of

computation is cheap and it can get a large share of the processor for this

low price. At some critical �, an agent will want to cut back on spending

since the server time is too expensive: it will get more out of spending its

money elsewhere. It still wants to �nish a job at this server, though, so it

o�ers a small positive bid, in order to execute slowly without wasting too

much money. If an agent will only execute at one host, it will be willing

to spend all its currency at that host, or just enough to outbid the nearest

competitor if it could thereby o�er less. On the other hand, if an agent has

many tasks, it will want to weigh the relative costs of time at those hosts

and bid less on expensive servers in order to save money for cheaper ones

where it can save a greater amount of time with the same amount of money.

Bredin derived a bid function that minimizes the total time spent by

the agent while not spending any more than the agent's allotted money.

A full explication of the result can be found in [4]; some key features are

summarized here. The result springs from the following assumptions:

1. Agents know in advance which hosts they will visit,

2. They know, for each host, the amount of processing they will perform

there,

3. A server can closely estimate its capacity, or rate of computing.

Indeed, some agent applications might not lend themselves to such esti-

mates and predictions. Still, this bidding system will serve a broad range of

applications.

Having collected the bid function of each agent, the server determines the

value � =
P

i
ui such that ui � gi(�) for each i. This is the set of satisfactory

2

bids: � is their sum and each bid is the amount that the corresponding agent

would actually be willing to o�er if all others were o�ering those bids.

Now agents can plan their expenditures as follows: Each agent has a

remaining reservoir of (electronic) currency I , the value its owner has placed

on the agent's mission. It also knows, for each server k that it plans to visit

after the present server, the going rate �k of computation at server k (its

`demand'), the capacity ck of the server and the size qk of the task it wants

to perform there. It is the agent designer's job to estimate qk , which is not

necessarily easy. Still, the better the designer can approximate the size of

the task, the better the results, either in money spent or in time taken.

Note that the server demand �k is the price of time received by any agent,

whereas each agent's ui is the rate at which it will pay against wall time.

Bredin's paper shows that if the agent has this information and wants

to minimize the total time taken for all its jobs (which presumably it does),

then its optimal bid at server 1 (the next one it will visit) is

u = g(�) =
(�� ��)2

2
2

�1 +

s
1 +

4
2�

(�� ��)2

!

on the interval [0; �=�] and 0 outside that interval. Here the coeÆcients �,

�,
 uniquely de�ne the agent's bidding strategy; they refer as follows:

� = I �
X
k 6=1

qk

ck
�k

� =
q1

c1

 =
X
k 6=1

qk

ck

p
�k

We can interpret these co-eÆcients roughly as follows: � is the agent's

estimate for how much currency it has available to bid at this server (note

that it usually will not bid this much since it wants to bid less if it can,

particularly if doing so will allow it to save more time later at a cheaper

server). � is the size of the job relative to the capacity of the server: the

time the job would take if this agent had the server to itself. Thus �=� is

the maximum rate at which the agent can a�ord to pay for service at this

server, in order to have enough money left over to �nish its other tasks. At

that rate, however, it would need the whole processor; otherwise it would

take longer than the ideal time and it would not be able to a�ord to pay

at the rate of �=� for so long. Now, if it could get the whole processor, it

3

server's demand (�)

a
g
en
t'
s
b
id
(u
)

21.510.50

1.2

1

0.8

0.6

0.4

0.2

0

Figure 1: Example plot of agent's bid vs. server load, � = 100, � = 50,

 = 15.

would only be because no other agents are bidding, in which case it need

not pay anything at all. If there is competition, on the other hand, then

the agent will necessarily receive only part of the server and must expect to

spend more time there. As such it will bid at a lower currency rate: this

is why the curve in Figure 1 decreases at the right, even though the `going

rate' � of the host is less than the agent's maximum pay-rate �=�.

 is a factor which re
ects the agent's reluctance to pay at this server as

opposed to other servers. A high
 will discourage the agent from bidding

here, because it indicates that other servers will tend to give it a better

\bang for its buck." In other words, the agent saves more time by o�ering

an extra dollar at another server than it does by o�ering an extra dollar at

this server. When it has no jobs at other servers, the agent will have
 = 0,

but this creates a discontinuous function, so the D'Agents bid management

daemon pins
 values at the low end to �=1000. Experimentation showed

that this limit does not lead to signi�cant numerical errors and still closely

approximates the desired function.

4

1.3 Proportional-share CPU scheduling

If agents are going to be scheduled according to the amount of money they

o�er, they want to execute twice as quickly when they o�er twice as much

money. Yet schedulers in most present-day operating systems o�er a `pri-

ority' system as the only way to control the allocation of the CPU: pro-

cesses with higher priorities are more likely to get a given quantum of time

than those with lower priorities. These schedulers usually o�er progress

guarantees|for example, that each process will necessarily take another

step eventually|but make no quantitative o�ers as to the rates at which

these processes will accrue CPU time.

What is needed is a proportional-share scheduler, a scheduler which al-

locates time to processes in the proportion of their ticket holdings. If a

process holds t tickets during a period when the total number of tickets held

on the system is T , then a proportional-share scheduler will give this process

t=T of all the scheduler quanta it allocates during that period, within some

tolerance known as the throughput accuracy.1

To support the D'Agents market system, a modi�ed Linux kernel called

QLinux was selected. QLinux implements a scheduling algorithm known as

Start-time Fair Queuing [5]. The algorithm schedules runnable processes

in order of their `�nish tags.' The �nish tag of a process is determined by

s + 1=t where s is the �nish time of the last quantum the process received

(or the time when it became runnable, if it was blocked) and t is the number

of tickets held by the process.

2 Project Design

A system was implemented whereby agents in the D'Agents system [6] can

register at each host a bid function which determines, given the total bid

(the demand �) at that host, the rate u at which the agent would be will-

ing to pay to get cu=� instructions per second (where c is the number of

such instructions that the processor can execute in a second). This system,

bidman, consists primarily of a daemon running alongside the agent server.

The bidman daemon collects and manages the bid functions, and whenever

the pool of agents (the `market') changes (whenever one is added or removed,

or changes its bid function), the server re-calculates each agent's payment

rate using these bid functions. The bid functions are assumed to be of the

1When processes block, they get less time than is allotted to them, but the other

processes still get fair time: the ratio of quanta received by any two non-blocked processes

will be the ratio of the tickets held by those processes.

5

optimal form discussed above, and are declared only in terms of the three

co-eÆcients �, � and
. An `expenses' �eld associated with each agent,

which is available as a variable to the agent program and persists across

jumps, is incremented by the amount of currency which the agent has con-

sumed since the last change in the market. In an open system, the agent

would eventually be charged this amount via a secure electronic currency

system. In the present system, agents are trusted to keep track of their own

expenses.

2.1 Organization of Scheduling

The scheduler used by the underlying operating system (QLinux) supports a

hierarchy of scheduling `nodes' where the children of any node are scheduled

proportionally with respect to one another, according to their relative ticket

holdings. In the D'Agents market system, all agents which have declared a

bid are children of a single node; no other processes are part of this node.

Agents which have not yet bid reside in a di�erent node which has a small

number of tickets. This ensures that, whatever part of the processor is

allocated to the agents' node, they share that time in the correct proportion;

furthermore, the fraction of the processor devoted to background tasks and

to the agent server is limited to a certain constant fraction.

Suppose for the sake of example that the agent-server's scheduling node

has 9 tickets, the active-agents node has 90, and the waiting-agents node

has 1 ticket (the actual numbers can be determined by the system operator).

Then 9% of the CPU will be devoted to server processing, 90% to agent tasks,

and agents which have not yet bid have to crawl along, sharing a mere 1% of

the CPU between them, until they bid, at which point they'll be moved into

the active-agents node. Now if there are two agents in the system, A and B,

with 2 and 3 tickets respectively, then A will get 40% of the time devoted

to the agent node and B will get 60%; thus A will get 40% � 90% = 36% of

the CPU.

So, while agents have to share the processor with non-agent processes,

it is as if they are running on a slightly slower CPU (in this example, one of

90% the speed of the actual CPU). The \server capacity" value that agents

use takes this into account (it is based on a benchmark2 that is run as an

agent). Note that, when the server or other background processes on the host

2To de�ne speci�c benchmarks useful for agent applications is beyond the scope of this

project. Here we used a simple integer test which times two loops, one of which performed

one more integer operation per iteration than the other. The extra time per iteration spent

by the bigger loop is taken as the time to perform one Tcl integer operation.

6

/
(root node)

/best_effort

/waiting_agents

/agents/cheap agents

/dagents_server

Figure 2: The QLinux scheduling hierarchy used in the D'Agents market

system

block for I/O, quanta that would otherwise be given to them will be given

to busy agents, and thus agents may complete their jobs slightly earlier than

expected. The variability of this allocation is a necessary disadvantage of

the system, since system upkeep requires an unpredictable, if small, amount

of processing. Suppose for the sake of example that 90% of the CPU is

allotted to agents. As long as non-agent processes are processing busily,

agents will share amongst themselves that 90% of the CPU. But when most

non-agent processes are blocked (a frequent occurence), the scheduler gives

extra time to the busy agent processes, rather than let the processor go to

waste. Ideally, future OSes will o�er precise accounting for user processes

and make this information available to a secure super-user process (in fact,

it would only require small modi�cations to the existing QLinux kernel).

QLinux does not o�er this kind of accounting so the present D'Agents market

system gives the bene�t of the
uctuation to the agent's wallet. Presently,

the market server and the agent agree on a price per time unit and the agent

is charged at that rate, against real time, until another auction takes place.

Figure 2 shows the scheduling organization used by the D'Agents market

system. All nodes are children of the root node, and its immediate children

are proportionally-scheduled with respect to one another. Time thereby al-

lotted to each node is divided among that node's children by proportional-

share scheduling as well. The /agents node is where active agents reside;

it should get the lion's share of the tickets at this level. Agents which have

just arrived and have not yet declared a bid reside in the /waiting_agents

7

node, which gets much less time. When agents run out of money, they

are put in the /cheap_agents node, which gets even fewer tickets than the

/waiting_agents node. The bidman daemon and the agentd server are

placed under the /dagents_server node, which gets a moderate allocation

of tickets. Finally, the /best_effort node is the default where other pro-

cesses are born, for example, those executed at the command line. Note

that the exact ticket holdings of these nodes are an operational parameter

rather than a software-design issue and can be adjusted by the operator to

suit the circumstances.

2.2 Planning

To help agent designers plan their bids, library functions have been created,

following the analysis in Bredin's paper [4]. One routine (bid_strategy)

takes information about the agent's itinerary (which hosts are to be visited

and the size of the tasks to be performed at each) and produces the co-

eÆcients that the agent gives to the agent_bid call,3 which takes �, � and

 as arguments and passes them to the bid manager as described below.

The model does presume that agents know in advance which servers they

want to visit. It further assumes that the agents can fairly accurately assess

the size of their tasks in units of total number of (abstract) instructions.

See section 4 for some discussion of this possibility. Even agents that have

only one task to perform and don't care where they perform it can use the

bidding interface; they can simply o�er an itinerary of one host and will bid

all their endowment at that one host (or less if there is less demand).

Figure 3 gives example AgentTcl code for an agent that declares a bid.

The capacity values are hard-coded in this example but ultimately, bench-

marks should be devised and agents can be provided which will respond

to queries with their servers' capacities. hosts_to_loads is another utility

routine; it determines the load (demand) of each host in the given list (by

querying an agent on that host called deman) and it returns a list of those

loads.

2.3 bidman's Messages

The bid-management program (called bidman) runs as a daemon process

separate from the agent server proper and runs with super-user privileges

(since QLinux allows only the super-user to modify the scheduling hierar-

chy). It opens up a System V IPC message queue and listens thereon for

3So far implemented only in AgentTcl.

8

#!/usr/agenttcl/bin/agent

package require libbid.tcl

set endwmt 1200

set hosts {happy doc sneezy snow-white doc}

these are the sizes of the tasks to be performed

at the five hosts above, respectively.

set task_sizes {50 30 15 25 10}

set demands [hosts_to_loads $hosts]

capacities are always measured against a particular

benchmark; these are all measured against the same.

set capacities {.01 .035 .012 .02 .035}

set expenses 0

set serv_num 0

foreach server $hosts {

agent_jump $server # now expenses is updated to show

amt. spent at prev. host.

set next_bid [bid_strategy $task_sizes $demands \

$capacities \

[expr $endwmt - $expenses] \

$serv_num]

agent_bid [lindex $next_bid 0] \

[lindex $next_bid 1] \

[lindex $next_bid 2]

do work here

incr serv_num

}

finally, we need to get the last bill

set expenses [expr $expenses + [agent_bill]]

Figure 3: A Tcl agent which bids.

9

messages from agent processes. The messages come in �ve
avors. Those

that can be sent by an agent allow it to 1) declare its existence, 2) declare

its impending death, 3) set its bid function, and 4) to have its currency

consumption (its \bill") reported. The �fth tells bidman to make sure the

scheduling hierarchy is in place and that all the server processes are in the

right scheduling nodes; it is sent by the agent server when it comes online,

thus moving itself into the /dagents_server node.

A set-bid-function message declares an agent's bid function by carrying

the three co-eÆcients �, � and
. Its receipt causes the bidman daemon to

take the following steps: �rst, it updates its notion of how much time and

currency each agent has used. Then it quickly recalculates all the agents'

payment rates, taking time linear in the number of competing agents.4 Fi-

nally, it sets each process's ticket holdings, at which time they begin con-

suming time at the agreed-upon rate.

Upon receipt of a get-bill message, bidman calculates a currency amount

that approximates the agent's consumption-to-date on the present server; it

does this simply by multiplying the time since the last such message by the

currency-rate that had been agreed upon at the last auction (Remember,

though, that the agreed-upon CPU fraction may not have been what was

received by the agent, in which case the agent spends less money and com-

pletes sooner). The bid manager daemon keeps track only of the amount of

currency charged to the agent for its work on that server, so just before the

agent jumps to a new host, it gets this bill from bidman and adds it into its

own C-level `expenses' variable, which holds a running expenses total for the

life of the agent. The agent_jump command writes the C-level `expenses'

variable to its counterpart variable in the agent language, so immediately

after a jump the agent's expenses, up through the previous host, are avail-

able to the agent designer. Each agent at its arrival or inception opens a

SysV message queue of its own, which it uses to receive the size of the bill

from bidman.

The agent's departure or untimely death is signalled to bidman with a

process-died message. This is sent by the agent itself before departure or,

in the case of a crash, by the server's background process which is waiting

to clean up after the agent.

Finally, the new-agent message puts the agent into the waiting-agent

scheduling node. It will be moved to the active-agents node the �rst time it

4This is done with a bisection search which looks for the �xed point of the function
de�ned by

P
i
gi(�), where gi(�) is the bid function of agent i. This �xed point is the �

for which � =
P

i
gi(�), our criterion for a satisfactory set of bids.

10

bids at this host; an agent should bid immediately after arriving at its host.

The waiting-agent scheduling node is intended to limit the processing time

of nodes which have not bid yet. Of course, if they never bid, they still have

the opportunity to run, albeit slowly (otherwise, they would never get the

chance to bid). A more secure system might give agents a timeout: if they

have not bid within some period after their arrival, they are terminated or

sent back to the source, under the assumption that they were trying to get

some free computing time at a low rate.

The only two messages over which agents have control are the message

to set the bid function and the message to get the bill|these are sent by

the agent_bid and agent_bill agent commands, respectively. The oth-

ers (the agent arrival and agent death messages) are automatically issued

by the agent interpreters. This way, the agent always gets moved to the

/waiting_agents node, without the agent program taking any action, so

processing is necessarily limited before the agent bids.

3 Tests

One measurement of success of a market system like this is the relationship

between agent expenditures and rates of execution. The question is: Do

agents which pay dearly get their tasks done sooner? Do agents which are

stingy take longer to execute? Figure 4 shows the relationship of average

execution rate (total number of instructions divided by total duration) to

expense rate (endowment divided by total duration). This data was taken in

one run of 120 agents, released at random intervals between 0 and 60 seconds,

where each agent's itinerary consisted of hops back and forth between two

similar machines (both original Pentiums at 133MHz, with 32 M of physical

memory and 56 M swap space). Each agent had a random task size at each

host; the task entailed ten thousand integer operations for each unit of task

size (the \task" is shown in Figure 5).

The plot shows, on the y-axis, the total of all an agent's task sizes divided

by the total time taken (note that no account is made for the network latency,

which was a local 10Base-T and had a relatively low latency). The x-axis of

the plot indicates the endowment of the agent divided by the time it took.

Thus agents which spent their currency more quickly will appear toward the

right side of the graph. The plot supports a positive relationship between

performance and endowment, and for poorer agents the relationship appears

close to linear. For the rarer, better-endowed agents, their extra cash does

not necessarily help much; this is because, to get good performance, they

11

Endowment/time-taken (dollars/sec.)

A
v
g
.
in
st
r.
/
se
c.

50454035302520151050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 4: Graph of agent performance vs. rate of expenditure over complete

itineraries.

set i 0

while {$i < 10000} {

set job 0

while {$job < $jobsize} {

incr job

}

incr i

}

Figure 5: The Tcl code for the \task" performed by test agents in Figure 4.

12

only need to outbid their nearest competitors, who are much poorer. As

such, we see that the graph
attens out considerably for agents with bigger

endowments.

A possible site of ineÆciency in a system like this is the time between an

agent's arrival at a host and the moment it �nishes its bidding process and

can begin work with the appropriate number of scheduling tickets. In the

present D'Agents market system, this lag time is determined by the number

of tickets allotted to the /waiting_agents node. However, when the number

of tickets allotted to this node is large, we expect more
uctuation in the

fraction of the CPU received by agents.

The wait-time before bidding is tested as follows: the agent interpreter

stamps a log �le when the agent �rst arrives at a host, and then again when

the agent_bid call returns. bidman stamps the �le when it has completed an

auction. The time between the arrival stamp and the �rst auction completed

after agent_bid returned is taken as the agent's wait time. In a test of 55

arrivals at one host, where 10% of the CPU was allocated to waiting agents,

the average wait time was 0.93 seconds.

During the same run, the error of bidman's time-consumed estimates

was tested. 20% of the CPU was allocated to non-agent processes, and so

the
uctuation in the amount of time given to agents was limited to 20%.

That is, agents could share anywhere between 80% and 100% of the CPU

in a given time period, depending on the computational demands of non-

agent processes. The test showed that bidman's error in estimates of time

consumed was about 17%. The error is determined as follows: just before

departing, the agent logs to a �le the fraction of the CPU it received at that

host.5 When bidman is noti�ed of the agent's death, it logs its own estimate

of what CPU fraction the agent would have received, had there been no

uctuation. After the run, the two values are compared for each agent, and

all the average of these errors is found. This average, 17%, is less than what

can be expected due the
uctuation of the CPU fraction shared by agents,

which was limited to 20% in this test. This evidence supports the claim that

the error in time-consumed estimates is primarily due to this
uctuation.

5The agent has access to this information through a standard UNIX system call,

getrusage, but the bid manager does not have the ability to get this information for

processes other than itself. Communication back and forth between agents and bidman

would be prohibitive, since agents would need to be interrupted in the middle of their

tasks. For these reasons, a design decision was made, that bidman would use estimates

rather than query the agent to �nd out how much time it consumed.

13

4 Future Work

This project is the beginning of a versatile, widely usable open system: many

features could be added to enhance it.

To improve accuracy, the kernel should be extended to o�er process ac-

counting information to superuser processes like bidman. This would be a

simple modi�cation: the existing getrusage(2) system call is just an inter-

face to a deeper routine that takes as its parameter a pointer to the process

structure for which accounting should be reported. A new system call could

be created that takes a process ID as a parameter, �nds the correspond-

ing process structure, and calls the underlying routine. Making this change

would improve accuracy signi�cantly: it would mean that bidman could de-

termine agents' consumption down to a quanta rather than merely within

20%, or whatever fraction of the CPU is allocated to non-agent processes.

Network bandwidth and other resources could also be managed and

priced by the same scheme used here for CPU time. QLinux already pro-

vides the infrastructure for managing network
ows using HSFQ; all that is

needed is an agent interface to it and a way of knowing how much network

traÆc an agent will produce (or receive). The same pricing model could

be used: \task sizes" would become message sizes (or the size of groups of

messages), and \server capacities" would be the bandwidth of the server's

network connection (some allowances would have to be made for the vari-

ability of end-to-end network bandwidth).

Finally, a system like this will be most useful in the greatest number of

applications if a system can be contrived for estimating job sizes program-

matically. We envision a kind of pre-pro�ling: an algorithm that could, for

a certain modest class of input programs, process the input source code and

determine how many of various kinds of instrucions will be needed. While

this may seem like pie in the sky, it is not completely un-reasonable that

such a technique could be invented; the biggest problem comes with open-

ended loops, ones whose limit is not known even while the loop is running

(such as a loop that counts the number of elements in a linked list). About

these open-ended loops, nothing can be done. But such a system, if it does

exist, would be able to handle situations where the limit of a loop is known,

if only at run-time, because the agent can split up its tasks at each server.

So, just before entering a loop, the agent could use its information about

the size of the loop to execute another agent_bid command to ration its

remaining currency on this job.

14

5 Acknowledgements

Thanks to Robert Gray for advising me on this project, to Jon Bredin for

doing all the hard work (the theory), and for having a cool haircut, and

thanks to Daniela Rus and David Kotz for being the committe that evaluates

this. I am indebted, too, to the residents of Foley House for supporting me

in my midnight angst and to the spring breezes for giving me a reason to

persevere.

References

[1] Ezra E. K. Cooper, Robert S. Gray. An Economic CPU-Time Market for

D'Agents. Senior Honors Thesis, Dartmouth College, June 2000. Avail-

able as Dartmouth Computer Science Technical Report TR2000-375.

[2] Jonathan Bredin, David Kotz, and Daniela Rus. Market-based resource

control for mobile agents. In Proceedings of the Second International

Conference on Autonomous Agents, pages 197{204, Minneapolis, MN,

May 1998. ACM Press.

[3] Jonathan Bredin and David Kotz and Daniela Rus. Mobile-Agent Plan-

ning in a Market-Oriented Environment. Technical Report PCS-TR99-

345, Dept. of Computer Science, Dartmouth College, May 1999. Revision

1 of May 20, 1999.

[4] Jonathan Bredin, Rajiv T. Maheswaran, C� agri Imer, Tamer Ba�sar,

David Kotz, and Daniela Rus. A Game-Theoretic Formulation of Multi-

Agent Resource Allocation. In Proceedings of the Fourth International

Conference on Autonomous Agents, June 2000.

[5] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A Hierarchical CPU

Scheduler for Multimedia Operating Systems, in Proc. 2nd OSDI Sym-

posium, pp. 107{121, October 1996.

[6] Robert S. Gray. Agent Tcl: A
exible and secure mobile-agent system.

PhD. thesis, Dartmouth College, June 1997. Avalable as Dartmouth

Computer Science Technical Report TR98-327.

[7] Robert S. Gray. Agent Tcl: Alpha Release 1.1. Dartmouth College, 1995.

Available at http://agent.cs.dartmouth.edu/.

[8] Robert S. Gray. Installing D'Agents: Release 2.0. Dartmouth College,

1998. Available at http://agent.cs.dartmouth.edu/.

15

[9] David Kotz, Robert S. Gray. Mobile Code: The Future of the Internet.

In Proceedings of the Workshop \Mobile Agents in the Context of Com-

petition and Cooperation (MAC3)" at Autonomous Agents `99 s, pages

6{12, May, 1999.

[10] C. A. Waldspurger. \Lottery and Stride Scheduling: Flexible Propor-

tional-Share Resource Management," Ph.D. thesis, MIT, 1995.

A bidman User's Manual

A.1 Introduction

This documentation extends the documentation for AgentTcl [6], which is

necessary background reading for this documentation.

bidman is an optional extension of the D'Agents mobile agent system

that allows economically-based resource management including the dynamic

calculation of prices for such resources based on supply and demand. The

only resource controlled by the present bidman system is CPU time: agents

plan their computational tasks and ration their currency over the extent

of these tasks, executing more or less quickly depending on their rate of

expenditure relative to other agents. As of this writing, the bidding system

interfaces only with AgentTcl and not with the other agent languages in

D'Agents.

For more information on the background and performance of the system,

see [1].

A.2 Bidding model

A full explanation of the bidding model employed by bidman can best be

got from the paper by Jon Bredin that introduced the model [4]. However,

a few points will be worth noting here.

Each agent declares a bidding function, whose input is the total of all

bids at the present host and whose output is the agent's own bid. The

server will �nd a set of bids for which each agent's bidding function returns

the agent's bid in that set: that is, it is a set of bids with which all agents

are happy. Each agent declares, through its bid function, how much of the

server's load it would make up, if the entire community of agents at that

server were paying at the given rate.

An agent's optimal bidding function is characterized by three real-valued

parameters, commonly referred to as �, �, and
. The �rst expresses the

16

amount of currency the agent has available for its task at this server; the

second expresses how much time it would take if the agent had the server

to itself. Thus �=� is the maximum possible rate at which it could pay for

service. As such, the bidding function is positive in the range (0; �=�) and

is always � �=�. Agents almost never bid that much, however, since by

o�ering a bit less they can often save a lot of money while losing only a

little time; the time can then be caught up at a cheaper server. An example

bidding function is shown in Figure 1.

In return for a bid of u, an agent expects to receive u=� of the CPU,

within some tolerance. To illustrate: if one agent is bidding at a rate

of $0.50/sec. and another is bidding at $0.75/sec., the total bid is � =

$1.25/sec. The �rst agent will receive 2/5 of the CPU (that is, two seconds

out of every �ve seconds of clock time) and the other will receive 3/5 (three

seconds out of every �ve seconds of clock time).

A.3 Installing

bidman requires QLinux, a modi�ed version of the Linux 2.2.0 kernel. QLin-

ux extends the Linux process scheduler to allow hierarchical proportional-

share scheduling, which allows bidman precise control over processes' rates

of execution. For more information about proportional-share scheduling and

the algorithm implemented in QLinux, see [5]. The QLinux kernel itself is

available at http://www.cs.umass.edu/~lass/software/qlinux/index.

html. The development team included Pawan Goyal (Ensim Corporation,

formerly with AT & T Research), Jasleen Kaur Sahni (Univ. of Texas),

Prashant Shenoy (Univ. of Massachusetts), Raghav Srinivasan (Univ. of

Massachusetts), Harrick Vin (Univ. of Texas), and T R. Vishwanath (Univ.

of Texas).

With QLinux installed, the next step is to install D'Agents. This can be

done by following the directions in the D'Agents installation documentation

[7, 8]. The market system is an optional package available alongside the

central D'Agents package.

The bid management daemon (bidman) needs to have super-user privi-

leges in order to have access to the scheduler. It can be run by hand from a

root login shell, but adding it to the system startup scripts is recommended;

this way it is always running and needs no extra attention.

17

A.3.1 Adding bidman to your system's startup scripts.

On my development system (a SlackWare Linux distribution with the QLin-

ux kernel added), this was easy; hopefully this example will serve to illustrate

how it can be done on other installations.

First, I looked in /etc/inittab and saw that, on going to user level

3 (the usual multi-user mode), the system runs the /etc/rc.d/rc.M ini-

tialization script. Careful inspection of this �le revealed that it executed

another, /etc/rc.d/rc.local, which is meant to be modi�ed by the sys-

tem administrator. It turned out to be empty, so I added the command

cd /usr/agenttcl/server/bidman; ./bidman -q

The -q
ag indicates quiet mode and instructs bidman not to print status

updates to the terminal.

A.4 Agent-language commands

Two commands have been added to the agent languages, namely agent_bid

and agent_bill. These commands are discussed in turn below.

agent_bid � �
 [<expenses>]

This command declares the agent's bidding function to the bidman

daemon. �, � and
 are the three co-eÆcients that determine the

bidding function (see section A.2). The optional <expenses> param-

eter is the name of the variable where the agent's total of incurred

expenses will be stored.6 During an agent_jump command, the inter-

preter will query the bidman daemon for the agent's total bill for the

agent's stay on that server and will add this bill to the value in the

expenses variable.7 These co-eÆcients will be re-used at each arrival

and departure event until the agent calls agent_bid again. However,

they are updated, at each event, as follows:

� bidman will deduct from � the amount of time consumed by the

agent. If this adjusted value should fall below the (very small)

minimum, a `safe' value will be used. The `safe beta' used in

this release is the length of the `bidding period': the average

6In the present release, this parameter is ignored and the name expenses is always

used.
7In fact, the variable's value is cached upon arrival at a host and it is this cached value

that will be incremented at the time of the jump. So writes to this variable by the agent

program are lost.

18

time between arrival/departure events. This way the agent bids

as if it were going to run for that much longer. It may run for

more (or even less), but as long as another auction occurs within

that time span, the agent gets to re-bid, and will ration out its

remaining currency for yet another average-bidding-period. This

safety feature helps prevent errors in task size from completely

bankrupting agents.

� The e�ective � used is the declared one minus all the agent's ex-

penses to date; the daemon keeps track of these expenses and up-

dates the total before each auction. The amount of time elapsed

since the last auction is multiplied by the pay rate (the value the

agent's bid function had returned at the last auction), and this

product is the increment in expenses. Thus expenses are updated

at the end of every stable period (where prices and consumption

rates are constant) in the history of the server. If this e�ective

� should drop below a small positive value, the agent necessarily

o�ers nothing, and is relegated to a slow-moving scheduler node

(/cheap_agents).

agent_bill

This command takes no parameters and returns the amount of cur-

rency the agent has consumed so far on this server. The returned

value is just a re
ection of the daemon's internal concept of how much

the agent has been charged: it is identical with the amount that is

subtracted from the declared � before performing an auction. This

routine allows the agent to keep track of its spending and perhaps to

perform other activities depending on its expenses.

There is one situation where it must be used: to get the last bill at

the last server the agent visits (i.e., when it will not call agent_jump

again) to update the `expenses' variable a �nal time.

A.5 Internals

This section is intended for programmers who are extending or modifying

the bidman software. It explains the internal workings of bidman in hopes

that future generations of OS hackers will improve upon it.

19

A.5.1 bidman structure

The bidman daemon basically does only one thing: it waits in a loop for

incoming messages (described below). Some messages cause it to perform

an auction, an iterative algorithm nestled within the class CMarket. The

CMarket class also keeps a list of all the agents that are competitively bidding

at the server.

A CMarket object contains a list of bidders (kept by a CBidderList

object) and various parameters, such as its demand value (the total of all

agent bids|also the price of CPU time received by any agent). It supports

operations such as: adding bidders, removing them, providing information

about a given bidder, and calling an arbitrary function for each bidder.

Adding and removing bidders automatically forces an auction.

To perform an auction, we �nd the �xed point of the function
P

i
gi(�),

where gi is the bid function of agent i. This �xed point is found using a

bisection search until the input and output of the function are within the

constant CMarket::TOLERANCE. The `error' of this search is the amount by

which the input and output di�er|it is reported with the auction results and

may sometimes be greater than CMarket::TOLERANCE, because the �xed-

point search gives up after a certain number of iterations. This can happen

when an agent has given a bid function that is `close' to discontinuous,

as when
 gets very small.8 However,
 is pinned to �=1000 so that bid

functions won't break up from numerical errors.

The range of the bisection search is the continuum between 0 and the

largest �=� that an agent has declared. We need to know this largest value

before doing an auction. Right now the software just searches through all

the agents to �nd it, in the function FindMaxAtoBRatio().

Note that the find_fixed_point function is designed to be modular and

usable even outside this project. As such, it takes a C function parameter

and can't deal with a class member function. To get around this, we use

the old kludge of giving it a C glue function that takes a pointer to an

object|the object on which to call the desired member function.

The bidder class keeps track of an agent's bill, the relative rate at which

it is supposed to be accruing CPU time, and the bidding function, among

other things. The bidder::Stamp() routine updates the recorded amount

of time used, based on the time elapsed and the fraction of that time that

was (supposed to be) used by the agent. It can be called frequently to keep

the agent's time-used values up-to-date; it must be called just before an

agent's ticket values change, or else successive stamps will be inaccurate.

8The limit of the bid function as
 goes to zero is, in fact, a discontinuous function.

20

A.5.2 Agent-bidman interface

bidman creates a message queue when it starts up. It uses the �le

/usr/agenttcl/access/bidman.queue

as a public reference point for the locating the message queue. Agent pro-

cesses know to look for this �le and to use it as an argument to the ftok(3)

standard library routine, which returns a key for the queue. This way all

processes can easily �nd the queue and send messages to bidman.

To interact with bidman, use the routines that send the various kinds

of messages (they can be found in the �le generic/genBidding.c. Each

message type has a stub routine that can be used to easily send messages

to bidman. The messages are discussed below.

NEW PROC MSG This message is sent by the AGENT constructor and

it includes the process ID of the sending process; when bidman receives

one of these messages it moves the named process into the slow-moving

/waiting_agents bucket so that it won't execute too quickly with-

out a bid. The agent is not added to the CBidderList and will not

compete in auctions until a SET_BID_FUNC message is received for the

agent.

BID FUNC MSG This is the message that establishes the agent's bid-

ding function. It carries with it a process ID and the three co-eÆcients,

�; � and
. The receipt of one of these messages is what causes bidman

to add the agent to the CMarket data structure (unless it is already

there, in which case the existing record will be updated). The message

also updates agent's bills and causes an auction, the results of which

are reported to bidman's terminal.

DIE PROC MSG When an agent reaches it's agent_end command, or

when it exits, it sends this message to bidman. It is also sent by

the agent interpreter's background handler if it detects that the agent

has died abnormally. Thus, whenever the process ceases to exist, this

message should be sent; it will remove the agent from bidman's data

structure.

GET BILL MSG Sending this message with a process ID causes bidman

to calculate that process's bill and to send it to a message queue that

is keyed to the pid. Speci�cally, the reply queue is identi�ed by a

key constructed as follows: the high-order word is 0x6167 ('ag') and

21

the low-order word is the process ID. Thus the agent process can wait

on this queue for its bill. Such billing replies can be sent in other

situations, however, so agent processes should always look for the last

message in the queue to ensure that their bills are up-to-date.

HUP SCHD MSG Sending this message causes bidman to re-establish

the scheduling hierarchy it wants. This means creating the �ve top-

level scheduling nodes, if necessary, and setting their tickets, but it also

means moving the server processes into the /dagents_server node.

agentd sends this message on startup so that it will be moved to the

proper node even if (as is usually the case) bidman was started before

agentd.

22

