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Abstract

Many memory-based methods for learning use some form of nearest
neighbor inference. By memory-based, we mean methods that localize
data in the training sample to make inferences about novel feature val-
ues. The conventional wisdom about nearest neighbor methods is that
they are subject to various curses of dimensionality and so become in-
feasible in high dimensional feature spaces. However, recent results such
as those by Barron and Jones suggest that these dimensionality prob-
lems can be overcome in the case of parametric models such as sigmoidal
neural networks which are patently nonlocal. This creates a paradox
because memory-based methods have been shown to perform well in a
number of applications. They are often competative with parametric
methods in terms of prediction error and actually superior in terms of
training time. In this paper, we study the unreasonable effectiveness of
memory-based methods. We analyze their performance in terms of new
metrics that take into consideration the interaction between the function
being estimated and the underlying probability distribution generating
the samples. Extensions of this analysis method might serve as the basis
for a new foundation for more general memory-based methods that could
explain their observed performance on real problems.
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1. Introduction

A significant body of current literature and research is devoted to learning
techniques that use direct, explicit representation of training data for learning,
recognition and classification. Among the different terms used for variations of
memory-based learning are: memory-based reasoning, case-based reasoning,
lazy learning, radial basis functions, nearest neighbors methods, exemplar-
based, instance-based, and analogical. Moreover, a number of other methods
commonly used in machine learning such as adaptive resonance theory (ART),
self-organizing feature maps and vector quantization are also explicitly mem-
ory based. These ideas are conceptually simple to understand and implement
because they depend on simple locality arguments, clustering and interpolation
algorithms. The theoretical underpinnings of this class of some memory-based
approaches are solid in the asymptotic limit — namely, they will perform at or
close to the Bayes limit [1] for a large class of problems.

However, there continue to be serious difficulties with memory-based methods
in the non-asymptotic case. First of all, it is easy to see that for problems with
high dimensional features or keys, even extremely large training sets will be
sparse in the full space. Secondly, algorithms and data structures for efficiently
dealing with high dimensional keys are primitive and reduce to linear searching
algorithms quite often. That is, even without the theoretical density issues, the
implementation problems of faster searching and updating remain as obstacles.

The first difficulty described above is paradoxical because, in practice, memory-
based methods perform quite acurately when implemented properly and on
appropriate applications [2, 3, 4]. This suggests that the conventional theory is
somehow not incorporating relevant properties of many real learning and clas-
sification problems. It is undeniable that, in spite of theoretical density issues,
experimental results demonstrate the equal or superior power of memory-based
methods on many problems. As described below, we believe that existing the-
ory fails to adequately model the interactions between the process generating
the data and the performance criterion.

In particular, arguments against memory-based methods typically involve uni-
form distributions of data, the inclusion of many irrelevant features and/or
uniform error estimates. These factors rarely appear to play a significant role
in real problems. Data is often clustered and the performance criterion typically
involves weighting by the data distribution. As for the inclusion of irrelevant
features, proper modeling and selection of the feature space in an application
should preclude this difficulty. Moreover, many real applications involve esti-
mating functions that change slowly in regions of high probability and make
abrupt transitions only in regions of low probability.

This kind of relationship between the object being estimated and the underlying
probability distribution is not directly modeled by current theory. For example,
in the PAC framework, the function classes and probability distributions are



constrained independently. Our analysis of memory-based methods involves
conditions on both simultaneously so that these classes are not independently
constrained. Two extreme cases demonstrate this interdepence. On the one
hand, it is trivial to “learn” a constant function under any distributional law,
even the uniform one. One the other hand, it is also “easy” to learn any
function if the distribution is concentrated at a few points even in very high
dimensional spaces.

Another major stumbling block for memory-based methods has been efficiency
— namely the performance of table lookup and associative addressing proce-
dures. While data structures such as k-d trees [5] allow efficient retrieval of
neighborhoods for fixed dimensions, the performance as a function of key di-
mension increases exponentially in the size of the key. This results in linear
searches for situations with high dimensional keys or features. These linear
searches are inefficient when large training sets are available.

Virtually all existing techniques are explicitly deterministic and seek exact
neighborhoods. We will show that some memory-based learning techniques
can be formulated as quadrature problems for which Monte Carlo methods
work at a fraction of the cost of deterministic methods. That is, instead of
finding exact neighborhoods as is currently being done, it should be possible
to use approximate neighborhoods and stochastic algorithms to get significant
speedups in searching without sacrificing too much performance in accuracy.
Initial work in this direction has already been done [6].

Much of the recent theory about machine learning has focused on parametric
methods: that is, methods that use some explicit family of functions parame-
terized in some natural way. Sigmoidal neural networks fall into this category
and are perhaps the best examples. Memory-based approaches to learning are
different from neural network methods in that there is no single global paramet-
ric model of the system being learned or modeled. Feedforward neural networks
with sigmoidal activation functions are patently nonlocal — the functions and
therefore the network response depend on behavior over a large portion of the
feature space. Attempts to localize the response can lead to memory-based
methods of one form or another.

Some of the attempts at localizing response has led to hierarchical networks
advocated, for example, by Jordan and others [7]. These approaches partition
the space adaptively and allow different subnets to optimize themselves to those
subregions. Other approaches implicitly use lookup tables with some form of
local smoothing, for example the radial basis function methods first developed
by Powell in approximation theory [8] and developed by Poggio, Girosi and
Moody for learning and recognition [9, 10, 11]. Statistical methods such as
CART and MARS also partition the input space and attempt to construct
estimates based on local information primarily.

A number of authors have made similar observations. Lee has performed a num-



ber of experiments comparing various learning methods and has commented on
the strikingly good performance of memory-based methods [2]. Lin and Vitter
have developed models of memory-based learning problems in the PAC [12]
framework [13]. However, to our knowledge the present work is the first ef-
fort to combine the target function’s behavior with the underlying probability
distribution to arrive at models and analyses that capture the tight couplings
that often appear to exist in real problems.

Section 2 develops some background. Section 3 develops an example of the
curse of dimensionality that is used in later sections. Section 4 reviews the
aforementioned work by Baron and Jones while Section 5 briefly presents the
results of some simultations by other authors. Section 6 contains the main
technical result of this paper which is a PAC type learning result for functions
whose variations with respect to a probability distribution are bounded. Section
7 1s a discussion of the results with some dieas for future work.

2. Background

We now introduce some basic notation and definitions. Sample input values
z; € R? are generated by an unknown probability law, y, and for each z; we
have a deterministic (for simplicity) class or function value, f(z;) = y;. The
aggregate sample data is S = {(z;,y)|i = 1,..., N}. The 2; are independent
and identically distributed according to the probability distribution, u. We
normally think of the z’s as features or system inputs. The goal is to estimate
f over the whole region of support of x. Given the training sample S, the
hypothesized function, fg, is constructed by a learning algorithm. The estima-
tion error criterion typically involves the underlying probability distribution
function according to

Eu(lfs = f11)

where ||- || denotes some distance, such as squared error and expectation is with
respect to the underlying distribution, g. Since this depends on the training
sample, S, which is itself a random variable, the error is also a random vari-
able. Quantification of the variation in error over the training set is typically
accomplished by introducing the following probability:

Prob{S|E,(|[fs — f]) > €} < 4.

This describes the performance of a particular learning method in terms of two
parameters: ¢ and e.

In the widely accepted PAC model of learning [12], the functions f are con-
strained to belong to some class, F and the distributions g may or may not be
constrained as well. Loosely speaking, a class of functions F are PAC learnable
if for every € > 0 and § > 0, there is some N and an efficient algorithm for
constructing fs so that

Prob{S|E,(|[fs — f) > €} < 4.



whenever |S| > N where S = {(z;, f(z;)} and f € F.

Learning and estimation techniques are generally successful in an application
because for most regions of interest, that is, regions with highest probability,
the value of the target function, f(z), changes slowly with z. This allows
generalization in the sense that output values for inputs are close to outputs
for sample inputs in the training data. There may be discontinuities in f but
they occur in regions of lower probability and so contribute less to the overall
error. Such continuity properties play a role, implicitly or explicitly, in virtually
all learning and estimation problems involving real valued or finely quantized
features.

Given a new value, #, memory-based methods estimate f(#) by retrieving data,
(2;, f(x;)), with 2; near &. Some sort of interpolation is used on the resulting
z; thus selected. In the case of classical nearest neighbor methods, one can
estimate f(Z&) by an average

F@) & Fs() =+ 3 flaw)

where the z; are k close feature values. Closeness is with respect to a general,
possibly spatially varying, metric. We stress that many inference techniques use
similar ideas although it may not always be explicit. (We previously mentioned
for example: memory-based reasoning, case-based reasoning, lazy learning, ra-
dial basis functions, exemplar-based, instance-based, and analogical.) In radial
basis function methods with rapidly decaying kernels, the weightings are not
uniform but the basic local averaging property still holds.

3. The Curse of Dimensionality

The curse of dimensionality arises in machine learning settings when one of the
above errors, d or ¢, are related to the training set size exponentially such as

C
N~ —
od
where C'is a constant and d is the dimension of the feature space. To construct
a simple example using smooth functions, consider the class of real-valued
functions

F={feC (-1, 119 [Vf(x)] <1}.

For v € R, let

gu(z) = (1= |z —v]*)?
for |[v — 2| < 1 and g,(z) = 0 otherwise. Let {v;} be an enumeration of the
2% vertices of [—1,1] and note that 0 < g,;(z) < 1 for & € [—1,1]* with
v, (v;) = 1. Moreover,

4
Vgu,(2)] < —= < 1

<373



for x € [—1,1]%

Now let

IOEDITNE

where a; = %1 equally probably. Then f € F and f(v;) = £1. This f has
values 1 at each of the vertices of [~1,1]¢ and yet has gradient bounded by 1.
Clearly, any estimate of f based on samples has probability of 0.5 of estimating
the value of f incorrectly in a quadrant where no data samples have been drawn.
If we assume the uniform distribution on z € [—1,1]¢ for sampling, then for
any sample of size N, that is |S| > N, we have

1 N
Prob{z such that |fs(z) — f(z)| > 1} > 3~ 5@t

This derivation was not made in the PAC framework but it can easily be
extended. The reader is invited to check the following details.

Assuming a uniform distribution, p, on [—1, 1]%, we have both

) 8
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and

8
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It can be shown that the expected error

/ () - fs(x)[2de
[-1,1]¢

1s at least

4 N
LT

for any sample of size N. If we normalize f so that ||f||2 = 1 then ||V f]la~ 1
also and this error would be about 1— % so that to achieve an error of no more
than ¢ we would need at least (1 — ¢)2¢ samples which grows exponentially in

d for fixed e.
This example is of interest because 1t involves a function class with bounded

norm and bounded averaged gradient as well and we will return to it in the
next section.

4. The Barron-Jones Theory

Barron and Jones have introduced a powerful new analysis technique into ma-
chine learning that oversomes the curse of dimensionality in a large class of



problems of machine learning problems involving feedforward type neural net-
works. We refer the reader to the original articles [14, 15] for details and only
give a sketch of the main ideas here.

The basic results derived by Jones, Barron and Girosi show dimension indepen-
dent convergence rates for feedforward neural networks and radial basis func-
tion methods when those methods are applied to specific constrained classes of
functions to be learned.

The following result is taken from [14]. Let ¢ be a sigmoidal function on R! (see
[16]) such as is commonly used in feedforward neural networks. A superposition
of such sigmoidal functions has the form

n

falz) = ch¢(ak -z + bi) + co.

j=1

which is the output of a feedforward neural network with a single hidden layer
and one output node.

Theorem [14] — Let
/ |w]|F(w)]dw < C < o0
R4

where f and F are a Fourier transform pair of functions on R?. Let B, be the

ball of radius r centered at 0 and g be a probability measure on R?¢. Then for

every n > 1, there is a superposition of sigmoidals involving n terms so that
2rC)?

[ () = fateyauta) < 20

B

r

This says that sigmoidal networks with n nodes can approximate smooth func-
tions with an error rate of O(%) This is a major breakthrough considering
that earlier approximation results gave either exponential convergence rates or
no rates at all, merely existence proofs [16, 17]. A number of extensions of this
result can be found in the original article [14]. This result has been used widely
to justify the use of feedforward neural networks in machine learning problems.
Earlier work by Jones derived a similar result for projection pursuit methods
[15]. All of those results rest on a powerful general theory stated below.

Theorem (Pisier [18]) — Suppose that G is a set in a Hilbert space H with
l|l9]]> < C for all g € G. Let f be in the closure of the convex hull of G. Then
for every n, there are g; € GG,7 = 1...n and coefficients A;,7 = 1...n so that

IF = Ngill* < C/n.

i=1



While Pissier’s theorem is powerful and general, its actual applicability in a
specific case must be carefully examined. To illustrate the possible difficulties,
consider the following. Take as G a set of m orthonormal vectors, g;, in H (an
infinite dimensional space). Let f = 1/m)_ g;. The norm of f satisfies

1117 = 1/m® Y llgill* = 1/m

and ||g;|| = 1 = C is the bounding constant. Note that the conclusions of the
theorem are satisfied by the zero vector since

I[P =1/m < 1/n

for any 1 < n < m. The result is vacuously true in this situation because the
norm of f is so small.

It is important to understand the relevance of this observation. Barron [14]
has shown a linear convergence rate for feedforward neural networks. The same
technique has recently been used by Girosi [11] to establish a linear convergence
rate for radial basis function methods. While Barron’s and Girosi’s results are
technically correct, they must be interpreted and used carefully. In particular,
we have show that in a simple case, the bounds obtained by the Pissier theorem
are vacuous and shed no real light on convergence rates. The problem has to
do with convexity and its relationship to orthogonality in Hilbert space norms.

Another example builds on the functions f introduced in the previous section.
Recall that when normalized, f has norm approximately one which is also
about the size of the norm of Vf. It is important to note that these are
the norms restricted to the hypercube [—1,1]¢ and not on all of R¢. Noting
that f is a convex combination of the generators g,, which are orthogonal,
the same vacuous statement about convergence rates is made by the Pissier
theorem. At the same time, if we note that Vf is bounded by 1 also (when
normalized), the Barron theory suggests that we can get linear convergence
rates using sigmoidal network approximations. However, this contradicts the
exponential rate we demonstrated in the previous section.

This seeming contradiction is resolved by recalling that the Barron result re-
quires a bound on the gradient over all of R? and not just on a subset. A smooth
extension of this f will lead to a significantly larger bound on V f which will
be exponential in d. Moreover, the sensitivity of the bound to scaling of the
coordinate space are already noted by Barron [14].

5. Experimental Results

A number of empirical comparisons of methods for solving classification prob-
lems have been conducted. In this section, we briefly summarize some of those



findings, refering the reader to original sources for complete details [19, 4, 2].

Lee and Lippmann report on a handwritten character recognition problem us-
ing backpropagation networks, k-nearest neighbors and radial basis functions
[19, 2]. They quantized handwritten characters into 360 pixels, each with 10
gray-scale levels. The training set consisted of 30,600 samples and the test set
had 5,060 patterns. They used & = 9 neighbors which was determined empir-
ically. The radial basis function method used 1,000 basis elements while the
feedforward network had 540 and 102 nodes in the two hidden layers. Timings
are reported for a DECstation 3100 rated at 3.7 Megaflops. Results of their
experiments are shown in Table 1. Table 1 is at the end of the article.

Ripley [4] surveys a number of classification techniques and reports on ex-
periments comparing them. The following error rates are reported with 0%
rejection rate (as was done above). The computations were done on a Sparc-
Station IPC (about 2 Megaflops rating). The problem involves learning the
decision regions for Tsetse flies in Zimbabwe based on 12 environmental vari-
ables. The feedforward networks used had 6 and 12 nodes on one hidden layer
using the quickprop algorithm for training. Learning vector quantization used
200 codebook vectors. The training set is based on 500 samples which is also
the size of the test set. Timings include training and evaluation on the test set.
Table 2 1s at the end of the article.

These empirical results are but two examples of the effectiveness of nearest
neighbor methods. There are numerous other simulations that support the
conclusion that memory-based methods can perform competatively on real
problems.

6. Analysis of Memory-Based Methods
In this section, we explore a new approach to analysing memory-based methods
in terms of the interaction between the underlying probability distribution and
the target function. Let D C R? be the support of a probability distribution

p. If p is continuous with respect to Lesbegue measure then du(z) = g(z)dx
forz € D and g(z) >0, z € D.

A basic measure of the variation of a target function, f, with respect to p is

[ Ivs@latede = [195@)ldnco)

Later we also uses the slightly modified measure

V(f.g) = / IV F(@)lg(2) 5 da

when p is continuous with respect to Lesbegue measure.



For p > 0, let B(xz,p) be the ball centered at z of sufficient radius, ¢, so that

/ du(z) = p.
B(z,p)

Note that when g exists as above and is continuous, asymptotically € 1s related
to p via the relationship

g(2)Cac® ~ p
where Cy = ﬂd/‘)/f‘(% + 1) is the volume of the ball of radius 1 in R¢. Then

=1

exprg(a)s L~ prg(x) X (n/Ze) by Stirling’s formula.

Introduce the average variation in f over balls of probability p with respect to

4 as
V(fop) = /D % /B @) = S,

Compare this with uniformly Lipshitz on average functions introduced by Haus-

sler [20]. Also define

Wifup) /Dp/xp

- ;/B(W)f() (=) P dpu(y)dp(z).

as the variance of f over balls of probability p averaged over D. For smooth
f we know that V(f,pu,p) = 0 and W(f, u,p) = 0 as p = 0 (by dominated
convergence for example).

To get a feeling for these measures of variation, it is useful to apply them to the
previously mentioned extreme cases than can arise. In the case of constant f,
the measures are 0 for all p. In the case of an arbitrary f but with a distribution
that is concentrated at a finite number of point masses, the measures are 0 when
p is smaller than the smallest point mass weight.

Theorem — Let o, 8,k > 0. Pick p so that V(f, u,p) < ad/8 and W (f, u, p) <
Vkad3/?/16. Then for a sample of size N for which Np—2./(N/8)\/p(1 — p) >

k we will have
1 &
E E .CL‘J | < «

with probability at least 1 — . Here 2; are the & nearest neighbors of « from
the sample of size N.

Outline of Proof — The basic idea is to break the problem down into four
events, each one of whose probability can be made arbitrarily close to 1. Three



of the events have to do with the local variations in f and ultimately measure
the rate at which a Monte Carlo quadrature method should work for estimating
f locally. The fourth event arises from purely sampling considerations, namely,
how many samples are needed to guarantee enough local values on which to
base a Monte Carlo estimate with high enough probability. The basic tool used
is a Tchebyshev type inequality which arises repeatedly.

Proof — By the above definitions, we have

1
/D a) - /B  TO)dpe) S V(S p)

Now,
Prob{ =z such that |f(z)
_ ! / FWdpy)| = a/2)
P B(z,p)
< 2V(fpp) /e
< QP%F_TI(n/Qe)%V(f,g)/Oz
so that

Prob{ =z such that |f(z)
1

; /B Tl < a2}

1— QP%F_Tl(n/Qe)%V(f,g)/Oz
L=2V(f,p,p)/a>1-3d/4

(AVARAY]

by the choice of p as stated in the theorem. Similarly,

Prob{ =z such that l/ [f(y)
P JB(z,p)

1

;/B(x,p) F(2)dp(2) P du(y) < \/Ea/él}

1 — 4V (£, 1, p)/ (a/3k)
1-6/4

(AR

by the choice of p again.

Thus the set of z for which both

1 1 2
ooy 1= 5 [y, T Pdl) < 0



and

has probability at least 1 —d/2.

For a sample of size N where

Np =2/ (N/8)\/p(1 = p) > k,

the number of samples in the ball B(z,p) is at least & with probability at
least 1 — d/4. To see this, we use Tchebyshev’s inequality. Let X; = 1 if the
ith sample among the N drawn is in B(z,p) and X; = 0 otherwise. Then
the sequence X; is Bernoulli with probabilities p and 1 — p of being 1 and 0
respectively. We have

Prob{|%2X¢—p| <So'}>1- % >1-4/4

for S = 2/+/8 where ¢’ = \/p(1 — p)/N is the variance of %+ > X;. Thus, with
probability at least 1 — §/4, we have

> Xi > N(p—So’) = N(p—2/p(1— p)/VNI > k.

These k samples, say x;,j = 1, ..., k can be used for a Monte Carlo estimate of
fB(xyp) f(y)du(y) according to

1
d ~ - T
[, S N

which has variance

1 1 ,
e = ;@Lmyﬂ”‘;Lwﬁ@@“”W@
< Véa/4

when z is in the previously specified set.

By Tchebyshev’s inequality again,

1 1
Prob{|- ) - = d R
robllg 324023 w@@ﬂwMM< o)
> 1-1/R?
With R = 2/\/5 and ¢ < \/ga/él, we have
1 1
Prob{|— ) - = d 2
robllgs Y1) 2L T < a/2)

v

1—5/4.



Combining all of the above, we have with probability at least 1 — §, that both
E 2 f@) =5 [ fdu)] <af2
- zj) — - ydu(y)| < @
k i ! P B(zp)

and

() — = /B W) <>

from which

|—foj )| < a

follows by the triangle inequahty. a

7. Discussion

The main result of the previous section does not, nor cannot, defeat the curse
of dimensionality in all cases. To get a sense of this note that

V(s < /D % /B VIl = yldp)dn(e)

< [ [ | cnntz)

| 9r@)rta() T 2% (n/20) Hu(e)
pra (n/20% [ [V1@lata) T d(s)
= praT(n/2e)3V(f,g)

to the first order in p'/”. The same bound can be derived for W (f, i, p) (this
is left to the reader). This suggests that the convergence of V(f, i, p) to zero is
going to be slow in most cases. It is governed by both p'/¢ and V(f,g) when g
exists. Now p'/? approaches 0 very slowly for large d but V(f, g) can be small
for a problem and herein lies at least one explanation for the good observed
performance of many memory-based learning methods.

IN

AN

As previously noted, this analysis can deal with both extreme cases: that of
a trivial function and uniform probability distribution; and that of a complex
function with a simple point mass distribution. We know of no other analysis
demonstrating that both cases are “learnable.”

It would be interesting to see whether the proof technique we use can be ex-
tended to other memory-based methods. We suspect that it can and this
should form the basis for further work. The question of efficiently estimating
V(f, ), W(f, i, p) and V(f,g) in a specific case is interesting of course and



should be attempted for some learning problems where memory-based methods
are both successful and a failure.

The Monte Carlo interpretation of memory-based methods suggests that ap-
proximate nearest neighbor searches should be acceptable for some problems
but with improved efficiency. This has been observed by Saarinen [6].
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Backprop net | k-neighbors | radial basis
Error rate 5.15% 5.14% 4.77%
Parameters 5,472 11,016,000 371,000
Training time (hours) 67.68 0.00 16.54
Classification time (sec/char) 0.14 6.22 0.24

Table 1: Handwritten Character Recognition (from [2]).

Method Error (%) | Time
1-NN 4.4 4 secs
3-NN 5.4 4 secs
Neural net (6 nodes) 4.2 3 hours
Neural net (12 nodes) 5.0 3 hours
LvQ 5.4 44 secs
Projection Pursuit 5.2 50 secs

Table 2: Tsetse Fly Distribution (from [4]).




