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ABSTRACT

In the past decade, research in neurocomputing has been divided into two relatively well-
defined tracks: one track dealing with cognition and the other with behavior. Cognition
deals with organizing, classifying and recognizing sensory stimuli. Behavior is more dynamic,
involving sequences of actions and changing interactions with an external environment. The
mathematical techniques that apply to these areas; at least from the point of neurocomputing,
appear to have been quite separate as well. The purpose of this paper is to give an overview
of some recent powerful mathematical results in behavioral neurocomputing, specifically the
concept of Q-learning due to C. Watkins, and some new extensions. Finally, we propose ways
in which the mathematics of cognition and the mathematics of behavior can move closer to
build more unified systems of information processing and action.

1 Introduction

The study of artificial neural networks has burgeoned in the past decade. Two distinct lines of re-
search have emerged: the cognitive and the behavioral. Cognitive research deals with the biological
phenomenon of recognition, the mathematics of pattern analysis and statistics, and applications in au-
tomatic pattern recognition. Behavioral research deals with the biological phenomena of planning and
action, the mathematics of time dependent processes and applications in control and decision-making.

To be mathematically precise, let us discuss simple formulations of each problem type. A cognitive
problem typically involves so-called feature vectors, € R”™. These feature vectors are sensory stimuli or
measurements and are presented to us in some random way — that is, we cannot predict with certainty
which stimuli will occur next. These observations must be classified and the classification is accomplished
by a function f : R® — R™. The problem is to build an estimate of the true function, f, based on
a sample set of the form S = {(#;,y:),7 = 1,..., N} which are drawn according to a joint probability
distribution on (z,y) € R"*™ say u(x,y). Call the estimate g(z). Typically, f(z) is the conditional
expected value of y: f(x) = fy ydﬂ(x,y)/fy du(z,y). A number of distinct situations in cognitive
neurocomputing arise depending on the type of information available for estimating f. (See one of the
numerous excellent textbooks on neural computing and machine learning for more details.)

e SUPERVISED LEARNING — The sample data, S, 1s as above so that correct classifications, apart
from noise, are part of the data. Moreover, an error criterion is typically provided or constructed
on the classifications: [g(z) — f(x)| is some error metric. This situation is closest to traditional
statistical regression and uses many classical statistical methods.
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e UNSUPERVISED LEARNING — No corrrect or approximate classification values, y, are given. The
problem is to organize the data into equivalence classes or clusters and then to label the classes.
These labels serve to define f from above and the performance criterion is related to how accurately
the equivalence classes are formed. Unsupervised learning is closely related to clustering and uses
techniques from that area.

e REINFORCEMENT LEARNING — As in unsupervised learning, no “correct” response is given but a
reinforcementis available. A reinforcement can be thought of as an error when g(z) is the estimated
response for feature vector & but the correct response f is not available. Reinforcement learning is
thus between supervised and unsupervised learning: some performance feedback is provided but
not in the form of the correct answer and the deviation of the response from it. The difference
between supervised and reinforcement learning has been characterized as the difference between
learning from a teacher and learning from a critic. The teacher provides the correct response but
the critic only states how bad the system’s response was. Reinforcements are often referred to as
“rewards” and “punishments” depending on their sizes and the context.

Behavioral neurocomputing derives its problems from planning, decision-making and other applica-
tions in which actions over time are of fundamental interest. The mathematical framework, which will be
formalized below, involves a system with states. Actions are available to move the system into another
state, perhaps stochastically. There is an immediate cost associated with taking an action. An action
at any given time may be optimal in the short run but may not be the best over the long run when
future costs and actions are taken into account. Behavioral applications are therefore most naturally
cast as reinforcement learning problems. The goal of behavioral learning is to have a system infer from
empirical data, the state-action pairs which give the smallest average cost.

There are a number of ways that such a behavioral system could be reduced to a cognitive problem.
One involves building the following type of training set. Given some initial state, generate a sequence
of actions randomly, stopping at some future time. Record the initial state, the action sequence and the
ultimate cost of taking that action sequence from that initial state. From this data, build a classifier
whose input feature vector is a state and whose output is the action sequence which has minimal cost
over all sequences tried. This estimate of the minimal cost to solve the problem from an initial state is
an estimate of the cost-to-go function.

A related way to solve the problem involves estimating these cost-to-go values for each state-action
pair. Notice that in a stochastic setting, the action which empirically resulted in the least cost solution
may not be the action which leads to the least cost expected value. So averaging is more appropriate
than merely keeping track of the minimum cost solution for a given action sequence.

Cognitive Learning

Behavioral Learning

Goal

Classifying inputs

Optimizing actions

Related Areas

Statistics
Pattern recognition

Control theory
Operations research

Relevant Approximation theory | Dynamic programming
Mathematics Probability Stochastic Systems
Status Sound Theoretical Emerging Analytic
Foundations Theory

Table 1: Cognitive vs. Behavioral Learning

The artificial intelligence community has had considerable difficulties with behavioral learning be-
cause of difficulties with temporal delays and combinatorial explosions resulting from brute force ap-
proaches. Only recently has the mathematics of controlled Markov chains been explored along with



solution techniques such as dynamic programming. A major breakthrough in learning optimal actions
for such processes has been Watkins’ Q-learning [3, 2, 4, 1].

In this paper, we give a quick overview of controlled Markov processes in Section 2. Section 3
presents Watkins’ basic results and Section 4 extends those results to describe a system that learns and
simultaneously converges to the optimal policy solution. Section b discusses possible areas of intersection
between the cognitive and behavioral problems.

2 Markov Decision Processes

The paradigm for behavioral neurocomputing can typically be cast as a controlled Markov process which
is described below. An environment has a number of states, X = {a;}. For each state, there is a set
of actions, A; = {a;;}, each of which transforms the current state to another state stochastically. This
is quantified as a collection of transition probabilities: p(x;, ai;, #x) being the probability that applying
action a;; in state z; we land in state x; at the next time step. These probabilities are independent of
time and previous states, hence the stationary Markov character.

Each action engenders a cost, k(z;, a;;), which depends only on the state and the action. The goal of
a behavioral problem is to minimize this cost over time. Such a temporal cost depends on a policy which
specifies the actions to be taken at various times in various states. Thus for each time, £, in a policy, we
have a vector of actions a; which tells us which action to apply for any of the possible states the system
could be in at time ¢. Specifically, a;:(2;) is one of the allowable actions a;; for state ®;. There are a
number of ways in which to quantify this temporal cost minimization:

e FREE-TIME MINIMIZATION — A designated state, zg, terminates the process. We are concerned
with the cost of the behavior up to the time this state is reached. Starting in some state z; and
following a policy, m = (ag, a1, as, ...), suppose we follow the trajectory x;, @;,, %5, ..., 2;,_,, %o the

cost will then be
T—1

> k(xi;, ai(xi,)).

7=0
However, since the transitions are stochastic, we must take an expectation over all possible trajec-

tories, starting with z; and terminating in ¢ with probabilities determined by the policy, 7, and
the corresponding transitions.

Vim, i) = E{Z_: k(ai;, ai(xi;))}

7=0
e FIXED-TIME MINIMIZATION — As above but the cost is computed up to a fixed time as opposed to
when a terminal state is reached.
e AVERAGE-COST MINIMIZATION — The average future cost is minimized (here 0 < v < 1 is the

discount factor):

L
1 .
N T j (e
Vim, i) = Lh_}n;o T 1E{j§_0'y E(ag;, aj(xi,))}.

e DISCOUNTED COST MINIMIZATION — Here the cost of future actions are discounted by a constant
rate, 0 < v < 1, so that

Vim, i) = E[Z Y k(wi;,a5(xi,)))-



We consider only discounted cost minimization problems here. A large body of literature in optimal
control theory has been devoted to solving such problems and we review the key elements, leaving out
the occasional technical requirements for the results to hold. We focus instead on the general flow of
ideas.

First of all, we need only consider policies which are independent of time if we are interested in the
optimal policy. The reason is that the process is Markovian and once we reach a state at a point in time,
only the future costs can be affected. Since the costs are additive (in a discounted way), an optimal
choice of action depends only on the current state. This simplification allows us to consider only policies
that are of the form = = (a,a, a,...) where a is a mapping from states to actions.

Secondly, the cost-to-go functions, which we now write as V (a, ¢) because we are restricting ourselves
to stationary policies, satisfy a recurrence relation of the form:

&dmﬂ:k@hdmﬁ+7§:M%ﬂ@DwﬂVWJ)

This identity has the following interpretation: using action a(z;) we go to state z; with probability
pl@;, a(z;), x;); once in state x; we have the cost-to-go value V'(a, j). Weighing these cost-to-go values
with the corresponding transition probabilities and adding gives the identity. Stacking these values to
form a vector V(a), the above equation becomes a vector-matrix equation of the form:

V(a) = k(a) +yP(a)V(a).

Thus, every stationary policy satifies an equation of the above form which can be solved by rewriting
it as:

(I —yP(a))V(a) = k(a)

where it is assumed that P(a) and k(a) are known for a given policy a. Thus this is a simple linear
system of equations which can be solved using standard matrix iterative techniques.

What this shows is that for any policy, there is a computational procedure for computing the cost-
to-go function for a fixed action policy. What remains is to find an action policy which will lead to the
overall optimal strategy — one that minimizes the cost-to-go for each state.

Specifically, the optimal policy a* has the property that

V(a*) = V* = ming{k(a) + yP(a)V"}.
This policy can be computed using the iteration, starting with Vg arbitrary,
Va1 = ming{k(a) + yP(a)V,}.

Then V,, = V* and the optimal policy is the policy which realizes the minimization above.

3 Watkins’ Q-Learning

The behavioral learning problem is to learn the optimal (minimal cost) policy using samples of the
following form:

si= (15, Giyaa, ki), 0 =1,2,3, ..

These samples are four-tuples with the interpretation that s; involves a trial use of action «; on state 7;
which resulted in a transition to state (; at a cost of k;. Given many samples with the same initial state
and action, we can estimate the transition probabilities as well as the expected cost of taking that action
from that state. With such estimates, a standard solution procedure for computing optimal policies for
a Markov decision process can be carried out. This is an off-line, batch approach.

Is there an on-line approach which will learn the optimal strategy adaptively, with guaranteed con-
vergence? The on-line strategy does not compute transition probabilities or costs explicitly. Watkins



has given an elegant solution to this problem which he named @Q-learning. Q-learning uses samples of
the above form to update a simple table whose entries converge and whose limit values can easily be
used to infer an optimal policy.

Q-learning is motivated by so-called Q-values which are defined as follows:

Q% (zi, ai;) = K (5, a:5) + vP(a)V(a).

Q%(zi, ai;) is the expected cost when starting in state x;, performing action a;; and then following policy
a thereafter. Let @Q* be the Q-values for the optimal policy a* meaning we take some initial action and
then follow it with optimal actions thereafter. For these QQ-values, we have
V(a™)i = min{Q" (2, aij) }
i3
and the optimal action from state z; is precisely the action a;; which achieves the minimum.
The beauty of Watkins’ Q-learning is that we can adaptively, estimate the Q-values for the optimal

policy using samples of the above type. The Q-learning algorithm begins with a tableau, Qo(z;, as;),
initialized arbitrarily. Using samples of the form

si= (15, Giyaa, ki), 0 =1,2,3, ..
we perform the following update on the Q-value tableau:
Qilniy ) = (1= B)Qim1 (i, i) + Fi (ks + 4V (G1))

where V() = ming{Q;-1({i, @) }. All other elements of @); are merely copied from @;_1 without change.
The parameters 3; — 0 as 1 — oo.

Theorem (Watkins [6, 7, 5]) — Let {i(z,«)} be the set of indices for which the (x,a) entry of the

Q-tableau is updated. If
Z Bi(z,a) = o0 and Z ﬁz’z(x,a) < o0
)

i(z,o i(z, o)

then @;(z, o) = Q@*(x, o) as i = oo. Accordingly, a;(z) = argmax,Q;(x, a) converges to the optimal
action for state x.

Proof — See [7, 5].

This result is remarkable in that it demonstrates that a simple update rule on the Q-tableau results in
a learning system which computes the optimal policy. In the next section we show how this method can
be embedded into an online system which simultaneously uses the current Q-values to generate policies
and uses the results to update Q-values in such a way as to satisfy Watkin’s theorem. Consequently, the
online system learns the optimal policy to which 1t ultimately converges.

4 Universal On-line Q-Learning

Online optimal learning and asymptotic optimal performance must be a compromise between performing
what the learning system estimates to be the optimal actions and persistently exciting all possible state-
action possibilities often enough to satisfy the frequencies stipulated in Watkins’ Q-learning theorem.
To begin, let us introduce a notion of asymptotically optimal performance. Suppose we have an
infinite sequence of state-action pairs that result from an actual realization of the Markov decision
process, say {(y, aq),¢ = 0,1,...} with (y;, ay) meaning that at time ¢ we are in state y; and execute
action a; resulting in a transition to state y;;11 at the next time. For such a sequence, we have a



corresponding sequence of costs v; which represent the actual costs computed from the realized sequence,
v; being the cost of following the sequence from time ¢ onwards.

We now define asyptotic average optimality. Suppose that V5 is the optimal expected cost-to-go for
state ¢. Let v;(n;;) be the observed cost-to-go values for state ¢ when the system is in state ¢ at time
nij. Let Nys(7) be the number of times the process has visited state ¢ up to time M. Then we say that
the policy is asyptotically optimal on average for state 1 if

vi(nii) = Vi
NM(Z) HZ:M Z( Z]) 4
as M — oo.

In order to establish this result, we need to construct an auxiliary Markov process with states
(zi,ai;) and transition probabilities, p((2;, ai;), (€m, @mn)) = p(3, 55, £m)/Jm where Jp, is the number
of allowable actions in state x,,. This auxiliary process has the following interpretation: the transition
probabilities between states are determined by the transition probabilities of the original controlled
process with the added ingredient that the actions corresponding to the resulting state are uniformly
randomized.

Theorem — Suppose that there is at least one stationary policy under which the states of resulting
Markov process constitute a single recurrent class (that is, the process is ergodic). Then, with probability
1, there is a mixed nonstationary strategy for controlling the Markov decision process with the following
two properties:

1. The optimal policy is estimated by Q-learning asymptotically;

2. The control is asymptotically optimal on average for all states that have a nonzero stationary
occupancy probability under the process’ optimal policy.

Proof — The proof consists of three parts. We begin by showing that under the hypothesis that the
original process has a stationary policy under which the Markov process consists of a single recurrent
class, the corresponding auxiliary process also has a single recurrent class. Let a(x) be the action for a
state  which makes the original process have a single recurrent set. Denote the corresponding transition
probabilities by p.(z, 2') = p(z, a(z), #’). Let D be the maximal number of actions per state: D > |{a;;}|
for all ¢.

Consider the auxiliary process’ canonical partitioning into subclasses of states in which each set of
the partition consists of states which are either a) transient or b) recurrent and communicate with each
other. Now the (#, a(z)) form a subset of the states of the auxilliary process.

Step 1. The Auzilliary Process is Recurrent — We will show that any given state of the auxilliary
process communicates with every other state. Let (z,a) and (#/,a’) be any two states of the auxilliary
process. We must show that

P (2, a), (z',a")) > 0
for some n. Pick any state y for which p(x, a,y) > 0. By assumption, there is an m for which

™ (y,2') > 0

under the special choice of actions, a(-). This means that there is a sequence of states y1 = ¥, Y2, ..., Ym =
x’ for which

p(yi, a(y:), yig1) >0
and so

x’a’ m—
P (), o) 2 PO () i) D) > 0
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Figure 1: Auxilliary Process Schematic

Since all states of the auxilliary process communicate with each other, all states must be recurrent. Thus
the auxilliary process consists of a single recurrent set of states.

Because the auxilliary process consists of recurrent states, the expected time to visit all states of the
auxilliary process is finite and all states will be visited in a finite time with probability 1.

Step 2. A Mized Policy — We next define a mixed time-dependent strategy for switching between
the auxilliary process and a stationary policy based on an estimate of the optimal policy. The mixed
strategy begins by chosing actions according to the auxilliary process. At times n; we switch from the
auxilliary process to the process controlled by the policy determined by the Q-table according to

aj(ng) = argmin, Qn, (r;, o).

At time my we switch back to the auxilliary process. For k = 1,2,3,... we have 1 = mg < np < my <
N1 < Migq... < OO

Let N’ the largest expected time to visit all states of the auxilliary process starting from any state
and let N = 2 N’. Consider the following experiment which is relevant to the discussion below. Start
in any state of the auxilliary process and follow it for N steps at which time we jump to an arbitrary
state and run for another N steps, repeating this process indefinitely. Call each such run of N steps a
frame, numbering them F; for i = 1,2,3,.... We want to concatenate the frames to produce a realization
of the auxilliary process. To do this, consider the final state of frame F;. Since N was chosen to be
twice as large as the expected time to visit all states starting from any state, with probability 1 some
future frame, say F;1; includes a visit to the final state of F; in the first N/2 = N’ states of that frame.
Concatenate to the end of F; the history in F;y; following the visit to the final state of F;. Each step
of this concatenation adds at least N/ consecutive steps of the auxilliary process so there are an infinite
number of visits to all states in the concatenation with probability 1. In the following construction, we
implicitly use this property of a concatenation of frames.

The definition of ny 1s as follows. At time mg_1, we began following the auxilliary process which is
recurrent. We store state transitions of the form

(77’ Ca o, Kj)a

where 7 is a state z;, o is an action taken by the auxiliiary process, ( is the state of the original process
to which the process transitioned and x is the observed cost of that transition, in a list. Proceed in this
manner until either N steps have been taken in this way or until the list contains a sample for each
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element in the Q-table. If the list to update the Q-table is completed first, we update the Q-table and
compute the current optimal actions. In this case, nj 1s defined as the time after which the Q-table was
updated. Otherwise, define ngy = my_1 + N and continue using the previous estimated optimal actions
as a policy. In either case, my = ni + k * N so we operate the process using the estimated optimal
policy for increasingly longer periods of time k * N. We then use this list to update the Q-table with
the samples in the list.

Assume that the Q-table has M entries. Then for updating the ith element for the jth time in the
Q-table from the sample list, use .

JxM+i

According to this scheme, element 7 is updated for 7 = 1,2, 3, ... and the corresponding subset of 3’s forms
an arithmetic subsequence of the harmonic sequence; hence it satifies Watkins’ criteria for divergence
and squared-convergence.

By the discussion above about frames, this list is filled in a finite amount of time infinitely often with
probability 1 but we impose a deterministic limit on the time spent in this mode generating a frame.
By construction and Watkins’ Theorem, the Q-table values converge to the optimal Q-values and hence
the optimal action policy is eventually found.

Step 3. Asymptotic Optimal Convergence — To prove the asymptotic optimal convergence, note that
the Q-table updates are performed according to Watkins’ criteria so that in the limit the Q-table values
determine an optimal stationary policy. Moreover, the time spent operating in the auxilliary mode
becomes an asymptotically small fraction of the time spent operating in the estimated optimal policy.
Hence, the asymptotic convergence to optimality.

To make this formal, note that asymptotic average optimality depends only on what happens in the
limit. Specifically, if we can show that the average of the observed cost-to-go values after some fixed
time converges to the optimal value then we are done.

To see this, run the process long enough so that the estimated optimal policy determined by the
Q-table is as close as desired to the optimal cost-to-go for the process. This will happen at some finite
time with probability 1 although the time is not known a priori. Since we can also wait until & is
arbitrarily large, the fraction of time spent in the appoximately optimal mode can be made as close
to 1 as we like. Now for a state that has nonzero stationary occupancy probability under the optimal
policy, the fraction of time spent operating under the estimated optimal policy approaches 1 and so the
empirical cost-to-go also approaches the optimal. For states that have zero occupancy probability under
the optimal policy, the empirical cost-to-go will be dominated by the empirical values determined during
the auxilliary process operation which will not be optimal in general. Thus the average within the mixed
mode of operation is guaranteed to converge to the estimated cost-to-go for the optimal policy but only
for states that have nonzero stationary occupancy probabilities under the optimal policy.

Bijspmi =
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5 Discussion

We have shown that there exists a strategy for operating a Markov Decision Process (under simple
conditions) in such a way that the optimal strategy is both learned and the asymptotic operation of the
system approaches optimality for states that have nonzero occupancy probabilities under the computed
optimal policy. This 1s only one of many possible strategies for performing both of these simultaneously.
The question of which operating procedures are best for fastest convergence to the optimal cost-to-go
values is beyond the scope of the techniques that we use. It is an important question to pursue in the
future.

One of the weaknesses of the Q-Learning framework 1s that states and actions for the Q-Tableaux must
be known a priori. This is restrictive in most dynamic learning situations — it may not be appropriate
or possible to select the actual states or actions of a system without significant experimentation first.
In general, we would like to simultaneously learn the states, actions and corresponding optimal policies
at one time. This subject has been looked into by various researchers but with few analytic results yet.
There has been growing interest in dealing with systems that have an infinite (contiuum) of possible
states and actions, requiring discretization for Q-Learning. How these states can be clustered or otherwise
organized to achieve optimal operation is a challenging question that requires serious future research.
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