
Agent Tcl: A transportable agent system

Robert S. Gray�

Department of Computer Science

Dartmouth College

Hanover, New Hampshire 03755

robert.s.gray@dartmouth.edu

17 November 1995

Abstract

Agent Tcl is a transportable-agent system that
is under development at Dartmouth College.
A transportable agent is a named program that
can migrate from machine to machine in a
heterogeneous network. Such programs are
a powerful tool for implementing information
agents since the electronic resources in a user's
information space are often distributed across
a network and can contain tremendous quan-
tities of data. Sending a user-speci�c program
to the network location of the resource is of-
ten the most convenient and e�cient alter-
native. The goal of Agent Tcl is to address
the weaknesses of existing transportable-agent
systems. Agent Tcl will run on standard hard-
ware, support multiple languages and trans-
port mechanisms, provide transparent migra-
tion and communication, and provide e�ective
security and fault-tolerance in the uncertain
world of the Internet. This paper describes the
architecture of Agent Tcl and its current im-
plementation and presents four information-
management applications in which Agent Tcl
has proven useful.

1 Introduction

An information agent manages a portion of
a user's information space. The electronic
resources in this information space are often
distributed across a network and can con-
tain tremendous quantities of data. Trans-

�Supported by AFOSR contract F49620-93-1-0266

and ONR contract N00014-95-1-1204

portable agents provide e�cient access to such
resources. A transportable agent is a named
program that can migrate from machine to
machine in a heterogeneous network. The
program chooses when and where to migrate.
It can suspend its execution at an arbitrary
point, transport to another machine and re-
sume execution on the new machine. By mi-
grating to the network location of the resource,
the program does not need to bring interme-
diate data across the network and can access
the resource e�ciently even if the resource de-
veloper provides only simple primitives. Thus
transportable agents are more e�cient than
the traditional client-server paradigm and al-
low the rapid development of distributed ap-
plications.

Transportable agents are a new research area.
The few existing systems include TelescriptTM

fromGeneral Magic and Tacoma from the Uni-
versity of Troms� and the University of Cor-
nell [Whi94, JvRS95]. These initial systems
su�er from a range of weaknesses. Tacoma,
for example, requires the programmer to ex-
plicitly capture state information before mi-
gration and provides no security mechanisms.
Telescript requires powerful or special-purpose
hardware, is not open to researchers and limits
the programmer to a single language.

The goal of the Agent Tcl project at Dart-
mouth is to address these weaknesses. Agent
Tcl will run on standard Unix platforms, sup-
port multiple languages and transport mech-
anisms, reduce migration to a single instruc-
tion like the Telescript go, provide transparent
communication and provide e�ective security
and fault-tolerance in the uncertain world of

1



E-mail E-mail

Router

Machine A Machine B

Figure 1: An example of a transportable agent. Here an active e-mail message has jumped to
interact with a router and will jump again to interact with the recipient's mailbox. This �gure
was adapted from [Whi94].

the Internet. Although Agent Tcl is far from
complete, it has been used in four information-
management applications in which the rele-
vant resources are distributed across a small
network. These applications demonstrate the
convenience and e�ciency of transportable
agents.

Section 2 discusses existing transportable-
agent systems. Section 3 describes the archi-
tecture of Agent Tcl while section 4 describes
the current implementation. Section 5 exam-
ines the four information-management appli-
cations. Finally section 6 covers the most im-
portant areas of future work.

2 Background

Transportable agents have been developed as
an extension to and replacement of the client-
server paradigm. The client-server paradigm
divides programs into �xed roles. A server
provides a set of services while a client requests
those services. The client and server often re-
side on di�erent machines which means that
client-server interaction requires network com-
munication. The most common communica-
tion mechanism is message passing. Message
passing is powerful and 
exible but requires
the programmer to handle low-level details
such as determining the network address of the
server, matching responses with requests and
handling communication errors [SS94]. Re-
mote procedure call (RPC) hides these low-

level details by allowing a client to invoke a
server operation using the standard procedure
call mechanism [BN84]. Most implementa-
tions of RPC use stub procedures.

The problem with message passing and RPC
is that the client is limited to the operations
provided at the server. If the server does not
provide an operation that matches the client
task exactly, the client must make a series of
remote calls, bringing intermediate data across
the network on each call. Transmitting the in-
termediate data is a waste of time and band-
width. To avoid this ine�ciency, server de-
velopers often provide specialized operations
for each client. This approach becomes in-
tractable as the number of clients grows, does
not allow for unforeseen clients and violates
the modern software-engineering principle of
providing simple, e�cient primitives rather
than complex procedures. The solution is for
the server to provide a set of e�cient primi-
tives and for the client to send a subprogram
to the server. The subprogram executes at
the server and returns only the �nal result to
the client. All intermediate data transfer is
eliminated, conserving bandwidth and reduc-
ing overall latency. The subprogram approach
is exempli�ed in the Network Command Lan-
guage (NCL), Remote Evaluation (REV) and
SUPRA-RPC [Fal87, SG90, Sto94].

The subprograms of NCL, REV and SUPRA-
RPC are limited in that they can not migrate
after their initial transfer, can not communi-
cate easily with each other, maintain the �xed

2



client-server division and are explicitly tied to
the client. Transportable agents, however, are
autonomous, named programs that communi-
cate and migrate at will. Transportable agents
support the peer-to-peer model in which pro-
cesses communicate as peers and act as either
clients or servers depending on their current
needs [Coe94]. Transportable agents do not re-
quire the maintenance of state information at
both the local and remote machines and do not
require a permanent connection between ma-
chines. This makes transportable agents more
fault-tolerant and, in combination with their
e�cient use of network resources, makes them
ideally suited to mobile computing [Whi94].
Transportable agents are a more natural �t
for applications such as work
ow, information
�ltering and network management in which
processing must be performed on multiple ma-
chines in sequence. A transportable agent sim-
ply migrates through the machines in the de-
sired order. Finally, transportable agents ease
the development, testing and deployment of
distributed applications since an application
can dynamically distribute its components as
it sees �t.

The advantages of transportable agents have
led to a 
urry of recent implementation
work. The four most notable systems are
Tacoma [JvRS95], Telescript [Whi94, Whi95b,
Whi95a],M� [DiMMTH95, TDiMMH94] and
IBM Itinerant Agents [CGH+95]. Tacoma
agents are written in Tcl/Horus which is a ver-
sion of the Tcl scripting language that uses Ho-
rus to provide group communication and fault
tolerance. The single abstraction in Tacoma is
the meet operation which an agent uses to exe-
cute another agent. All other services are pro-
vided by agents. For example, an agent meets
with the ag tcl agent on a remote site in order
to migrate to that site (a server at each site
handles meeting requests). Tacoma, however,
does not support the interruption of execut-
ing agents. The migrated agent executes from
the beginning rather than the point of migra-
tion. This makes it di�cult to write an agent
that must preserve state information while mi-
grating through a sequence of machines (but
not impossible since state information can be
explicitly collected and passed along with the
code). In addition Tacoma provides no se-
curity mechanisms and its Horus component
is unavailable on most platforms. Notable

features of Tacoma include rear guard agents
that restart lost agents, electronic cash that
is used to pay for services and prevent run-
away agents, and broker agents that provide
scheduling and directory services.

Telescript is a General Magic product that is
used in the AT&T PersonaLinkTM network.
Telescript is an object-oriented language in
which migration is viewed as the basic opera-
tion. Thus migration is reduced to a single in-
struction, go, which an agent issues whenever
it wants to move to a new machine. The agent
continues execution on the new machine from
the statement immediately after the go. This
transparent migration of internal state is more
convenient than the ag tcl agent of Tacoma.
Telescript agents communicate by obtaining
references to each other's objects if they are
on the same machine and sending objects to
each other if they are on di�erent machines.
A server at each site authenticates and exe-
cutes incoming agents, enforces security con-
straints, handles object passing, and continu-
ously backs up the internal state of agents in
case of node failure. Unfortunately, Telescript
is not open to researchers and is only available
on two Personal Digital Assistants (PDA) and
three high-end Unix workstations.

TheM� system allows code fragments ormes-
sengers to be sent to and executed on re-
mote machines [DiMMTH95]. Each machine
provides an execution environment that in-
cludes an interpreter, synchronization primi-
tives and a dictionary of shared data. M�

is a low-level system that is intended for a
range of distributed applications. The devel-
opment team has focused on distributed oper-
ating systems. M� does not directly provide
transportable agent functionality but could be
used as the lowest layer in a transportable
agent system. IBM Itinerant Agents is a
proposed system that combines transportable
agents with knowledge-based resource discov-
ery [CGH+95]. The development team has fo-
cused on the knowledge-based aspects.

There are numerous other systems that ex-
hibit aspects of transportable-agent behavior.
The intelligent routers of [WVF89] move from
machine to machine to accomplish a given
task; the Safe-Tcl/MIME combination allows
Tcl scripts to be embedded in electronic mail
messages [Way95]; the HotJava browser al-

3



lows Java scripts to be embedded in World
Wide Web documents [Sun94]; a SodaBot ap-
plication can dynamically distribute its com-
ponents [Coe94]; and Postscript programs are
often sent to remote displays. Only the in-
telligent routers provide arbitrary migration
and only SodaBot provides arbitrary com-
munication. The current status of the in-
telligent router work is unclear. Also no-
table are the object-oriented systems Obliq,
SmallTalk Agents and IBM Intelligent Com-
munications, each of which allows objects to
dynamically move through a network [Car94,
Way95, Rei94]. Like Telescript these systems
are intrinsically tied to a speci�c program-
ming language that is unnecessarily complex
for many applications.

3 Architecture

Existing transportable agent systems su�er
from one or more of the following weaknesses.

� Migration cannot occur at arbitrary
points or requires the explicit capture of
state information at the agent level.

� Communication between agents is nonex-
istent or di�cult.

� Security mechanisms are nonexistent.

� Agents must be written in a speci�c and
often complex language.

� Implementations only exist for nonstan-
dard hardware.

� Portions of the implementation only run
on speci�c Unix platforms.

� Source code is not available to the re-
search community.

The goal of the Agent Tcl project at Dart-
mouth is to address these weaknesses. Agent
Tcl should

� Reduce migration to a single instruction
like the Telescript go and allow this in-
struction to occur at arbitrary points.

� Provide transparent communication
among agents.

� Support multiple languages and transport
mechanisms and allow the straightforward
addition of a new language or transport
mechanism.

� Run on general Unix platforms and port
as easily as possible to non-Unix plat-
forms.

� Provide e�ective security and fault-
tolerance in the uncertain world of the In-
ternet.

� Be available in the public domain.

The architecture of Agent Tcl is shown in Fig-
ure 2. The architecture builds on the server
model of Telescript [Whi94], the multiple lan-
guages of Dixie [Gai94] and the transport
mechanisms of two predecessors at Dartmouth
[Har95, KK94]. The architecture has four lev-
els. The lowest level consists of an API for
each transport mechanism. The second level
is a server that runs at each network site. The
server must perform the following tasks.

� Keep track of the set of available inter-
preters.

� Keep track of the agents that are running
on its machine and answer queries about
their current status.

� Accept an incoming agent, authenticate
the identity of its owner, and pass the
authenticated agent to the correct inter-
preter.

� Provide a hierarchical namespace in
which each agent has a unique name. The
topmost division of the namespace speci-
�es the network location of the agent.

� Allow agents to send messages to each
other. The address of an agent is its name
within the hierarchical namespace. A
message is an arbitrary sequence of bytes
with no prede�ned syntax or semantics
except for two types of distinguished mes-
sages. An event message provides asyn-
chronous noti�cation of an important oc-
currence while a connection message ei-
ther requests or rejects the establishment
of a direct connection. A direct connec-
tion is a named message stream between
two agents. The �rst advantage of direct

4



Electronic
mail

Interpreter Interpreter...

Server or engine

TCP/IP ...

Agents

Security
State

capture

Interpreter

Server

API

Figure 2: The architecture of Agent Tcl. The four levels consist of an API for each transport
mechanism, a server that accepts incoming agents and provides agent communication, an
interpreter for each supported language, and the agents themselves.

connections is programmer convenience
since an agent can watch for messages on
a particular connection rather than for
any incoming message. The second ad-
vantage of direct connections is e�ciency
since, if allowed by the interpreter and
transport mechanism, control of the con-
nection is handed o� to the interpreter,
completely bypassing the server for all
messages sent along the connection. The
server's role in message passing is to select
the appropriate transport mechanism for
outgoing messages, bu�er incoming mes-
sages, and create a named message stream
once an agent accepts a connection re-
quest. The server passes control of the
stream to the interpreter if possible; oth-
erwise it bu�ers the stream messages as
well.

� Allow an agent to send itself or a child
agent to a remote site. The server selects
the appropriate transport mechanism for
the outgoing agent.

� Provide access to a nonvolatile store so
that agents can back up their internal
state as desired.

� Restore agents from nonvolatile store in
the event of node failure.

As in Tacoma all other services are provided
by agents. Such services include planning,

scheduling, dynamic blackboards, group com-
munication, location-independent addressing
and fault tolerance. With the addition of ap-
propriate service agents, Agent Tcl can be-
come the lowest level of more complex agent
architectures such as Agent-0 [Sho93], KQML-
based facilitators [GK94], the Open Agent
Architecture, [CCeWB94], the proposed IBM
Itinerant Agents [CGH+95] and the evolving
Uni�ed Agent Architecture [Bel95].

The third level of the Agent Tcl architecture
consists of one interpreter for each available
agent language. We say interpreter since it
is expected that most of the languages will
be interpreted due to security and portability
constraints. Each interpreter has four compo-
nents { the interpreter itself, a security module
that prevents an agent from taking malicious
action, a state module that captures and re-
stores the internal state of an executing agent,
and an API that interacts with the server to
handle migration, communication and check-
pointing. Some languages might allow the
submission of child agents but not migration.
These languages do not need the state module.
Other languages such as C and C++ might
support agent communication only. These lan-
guages do not need the security or state mod-
ules and can be compiled. The top level of the
architecture contains the agents themselves.

5



4 Agent Tcl Version 1.1

Agent Tcl is far from complete but an alpha
release is available [Gra95a]. The alpha re-
lease supports a single language (Tcl) and a
single transport mechanism (TCP/IP). It pro-
vides migration, message passing, direct con-
nections and rudimentary security. No service
agents have been implemented and the names-
pace is 
at rather than hierarchical. Here we
brie
y discuss Tcl and then the details of the
alpha release.

4.1 Tcl

Tcl is a high-level scripting language that was
developed in 1987 and has enjoyed enormous
popularity [Ous94]. Tcl has several advan-
tages as a transportable-agent language. Tcl
is easy to learn and use due to its elegant sim-
plicity and an imperative style that is imme-
diately familiar to any programmer. We feel
that it is critical to start with a simple, imper-
ative language and explore the range of ap-
plications that such a language can support.
Tcl is interpreted so it is highly portable and
easier to make secure. Tcl can be embedded
in other applications which allows these appli-
cations to implement part of their functional-
ity with transportable Tcl agents. Finally, Tcl
can be extended with user-de�ned commands
which allows a resource to provide a package
of Tcl commands that are used to access the
resource. This is more e�cient than encapsu-
lating the resource within an agent and will
be an attractive alternative in certain applica-
tions.

Tcl has several disadvantages however. Tcl
is ine�cient compared to most other inter-
preted languages and is ten thousand times
slower than optimized C [SBD94]. In addi-
tion Tcl is not object-oriented and provides
no code modularization aside from procedures.
This makes it di�cult to write and debug large
scripts. Fortunately several groups are work-
ing on object-oriented extensions to Tcl and
on faster Tcl interpreters [Sah94]. There are
also e�cient and structured alternatives to Tcl
such as the new Java language [Sun94]. The
lack of e�ciency and structure has not been
an issue so far since our agents are small and
rely on existing tools at each site for intensive

processing. As the agents grow in size, it will
be necessary to consider an extended version
of Tcl or a di�erent language.

The �nal disadvantage of Tcl is that it pro-
vides no facilities for capturing the internal
state of an executing script. Such facilities are
essential for providing transparent migration
at arbitrary points. Adding these facilities was
straightforward, but it required the modi�ca-
tion of the Tcl core. The basic problem is that
the Tcl core evaluates a script by making re-
cursive calls to the main evaluation procedure
Tcl Eval. For example, the handler for the
while command calls Tcl Eval in order to eval-
uate the body of the loop. The solution was to
add an explicit stack. The handlers are split
into one or more subhandlers where there is
one subhandler for each code section before or
after a call to Tcl Eval. Each call to Tcl Eval is
replaced with a push onto the stack. Tcl Eval
iterates until the stack is empty and always
calls the current subhandler for the command
at the top of the stack. The subhandlers are
responsible for specifying the next subhandler
and for specifying when the command is �n-
ished and can be popped. Figure 3 illustrates
this process for the while command.

The stack is not quite enough to handle com-
mand substitutions, but the details of com-
mand substitutions are beyond the scope of
the paper. Once the stack was added and com-
mand substitutions were handled properly, it
was trivial to write procedures that save and
restore the internal state of a Tcl script. These
procedures are the heart of the migration fa-
cilities.

4.2 Agent Tcl Version 1.1

The architecture of the alpha release is shown
in Figure 4. The architecture has two compo-
nents. The �rst component is the server that
runs at each network site. The server is imple-
mented as two cooperating processes. The �rst
process is the socket watcher which watches a
Unix socket for incoming agents, messages and
requests. A message is either a generic mes-
sage or a connection message. Events have
not been implemented. Requests consist of
asking for a name in the namespace, remov-
ing a name from the namespace, and getting
the next available message. The namespace

6



WHILE_EXPRESSION while expr body WHILE_EXPRESSION

if (expr)

     

else

          set flag to NEXT_COMMAND

          set flag to WHILE_BODY

          push body onto stackwhile expr bodyWHILE_BODY

bodyPARSE_COMMAND

while expr bodyWHILE_BODY WHILE_BODY

if (error in body)

          set flag to NEXT_COMMAND

          set flag to WHILE_EXPRESSION

else

evaluate and pop body

Flag Command

Figure 3: An example of how the stack works. The command stack is on the left and the two
subhandlers for the while command are on the right. Tcl Eval calls the �rst subhandler when
the while command is �rst encountered. The �rst subhandler evaluates the loop expression,
and if the expression is true, it pushes the body of the loop onto the stack. Tcl Eval evaluates
the body and then calls the second subhandler. The second subhandler checks for errors, and
if no error has occurred, Tcl Eval calls the �rst subhandler again in order to perform the next
iteration of the loop. Note how each subhandler sets a 
ag that indicates which subhandler
should be called next. The 
ag NEXT COMMAND means that the command is �nished and
can be popped.

Tcl extension
(agent commands)

Tcl core

Tcl script

Agent

(TCP/IP 

or Unix

domain)

Sockets

Request

Handler

Socket

Watcher

pipe

fork () pipe

Agent server

Agent

Tabler

Figure 4: The architecture of the alpha release

7



in the alpha release is 
at rather than hierar-
chical. The second server process is the agent
tabler which keeps track of the agents that are
running on its machine and bu�ers incoming
messages until the destination agent receives
them. The socket watcher forks a handler for
each incoming agent, message or request. The
handler interacts with the agent tabler and
takes the appropriate action.

The second component of the architecture con-
sists of the modi�ed Tcl core and a Tcl exten-
sion that provides the commands agent begin,
agent name, agent submit, agent send,
agent receive, agent meet, agent accept and
agent end. Internally each command uses the
server API to contact the server, transfer an
agent, message or request, and wait for an
acknowledgement. Here the main di�erence
between the alpha release and the proposed
architecture is that when migrating, creating
a child agent or sending a message, the al-
pha release bypasses the local server and inter-
acts directly with the destination server using
TCP/IP. This approach was adopted to sim-
plify the implementation and will change as
additional transport mechanisms are added.

An agent is just a Tcl script that runs on top
of the modi�ed Tcl core. The agent uses the
agent begin command to obtain a name in the
namespace. The agent tabler selects a unique
name and returns this name to the agent. A
name in the alpha release consists of the IP
address of the server's machine, a unique in-
teger and an optional string that the agent
speci�es with the agent name command. The
agent submit command is used to create a child
agent on a particular machine; agent submit
passes a Tcl script to the socket watcher on
the destination machine. The socket watcher
forks a handler which gets a name for the new
agent from the agent tabler and then starts
a Tcl interpreter to execute the agent. The
agent jump command migrates an agent to a
particular machine; agent jump captures the
internal state of the agent and sends the state
image to the socket watcher on the destina-
tion machine. The socket watcher forks a
handler which gets a name for the agent and
starts a Tcl interpreter. The Tcl interpreter
restores the state image and resumes agent ex-
ecution at the statement immediately after the
agent jump.

The agent send and agent receive commands
are used to send and receive messages. The
agent send command communicates with the
recipient's server while agent receive commu-
nicates with the agent's own server. The
agent meet and agent accept commands are
used to establish a direct connection. A di-
rect connection is a named, message stream.
Direct connections are not required for com-
munication but are more e�cient since they
bypass the server. The agent meet command
requests a direct connection while agent accept
either accepts or rejects the connection. The
two commands �rst exchange a round of mes-
sages as suggested in [Nog95] and shown in
Figure 5. The source agent uses agent meet to
send a connection request to the destination
agent. The destination agent uses agent accept
to get the connection request and to send ei-
ther an acceptance or rejection. An accep-
tance includes a TCP/IP port number. The
source agent connects to that port on the re-
cipient's machine. The two agents can then
send arbitrary messages along the connection.
The connection protocol will work even if the
two agents simultaneously issue agent meet. In
this case the agent with the lower IP address
and numeric id selects the TCP/IP port and
the other agent connects to that port. The
server will take on more of the responsibility
for establishing a connection when additional
transport mechanisms are added.

4.3 Example

Figure 6 shows an example agent. The agent
submits a child agent that jumps from ma-
chine to machine and executes the Unix who
command on each machine. The child re-
turns the list of users to the parent which
then displays the list to the user. The \who"
agent illustrates the general form of any agent
that migrates through a sequence of machines
and highlights the agent jump commandwhich
captures and transfers an agent's complete in-
ternal state.

5 Applications

We are using Agent Tcl in a range of
information-management applications. The
�rst application is an \alert" agent that mon-

8



Source
Agent Agent

Recipient
?

Y
3. Choose port

? ? ? ?

Recipient’s server

Queue

Y Y Y Y

Source’s server

Queue

?

Y
6. Connect

7. Exchange

message

(TCP/IP)

1. Send

meeting

request

(TCP/IP)

2. Receive

meeting

request

(TCP/IP)

5. Get meeting

acceptance and

port number

(TCP/IP)

4. Send meeting

acceptance and

port number

(TCP/IP)

Figure 5: The protocol for establishing a direct connection. Here the source agent issues
the agent meet command while the recipient agent issues the agent accept command. The
agent accept command can either block and wait for a connection request or can poll and return
immediately. A ? indicates a connection request and a Y indicates a connection acceptance.

9



    # jump from machine to machine and execute the Unix who command on each machine

proc who machines {

  global agent

  set list ""

  foreach m $machines {

    if {catch "agent_jump" $m"} {
      append list "$m:\n unable to JUMP to this machine"
    else {
      set users [exec who]
      append list "$agent(local-server):\n$users\n\n"
    }
  }

  return $list
}

set machines "bald cosmo lost-ark temple-doom moose muir tenaya tioga tuolomne"

  # get a name from the server

agent_begin

  # submit the child agent that jumps

agent_submit $agent(local-ip) -vars machines -procs who -script {who $machines}

agent_receive code string -blocking
puts $string

  # agent is done

agent_end

  # procedure WHO is the child agent that does the jumping

  # wait for and output the list of users

bald.cs.dartmouth.edu:
rgray    ttyp2    Sep  5 21:24 (:0.0)
rgray    tty6     Sep  7 07:14 

cosmo.dartmouth.edu:
gvc         pts/0       Aug 23 10:11

...

P

C

Bald

CC

Cosmo Lost-ark

C

Temple-doom

C

Tuolomne

C ...

Jump

Jump

Jump

Jump

Message

Create

Jump

Figure 6: The \who" agent submits a child agent that jumps from machine to machine and
executes the Unix who command on each machine. The Tcl code is in the middle (the agent
array holds the current location of the agent and is updated automatically as the agent mi-
grates). The path of the agents through the network is shown at top. A fragment of the output
appears at bottom.

10



for each m $machines {
  agent_submit $m -vars directory -proc file_watch {file_watch $directory}
}

set machines "bald moose"
set directory "~rgray"

  # get a name from the server

agent_begin 

set email_agent "bald rgray_email"      # machine and name of email agent

  # submit the "file" agents that watch for changes in file size

  # wait for one of the "file" agents to send a message saying that a
  # file has changed size; then send an alert message to the user by 
  # asking the user’s email agent to send a message to its owner

while {1} {

}

  agent_receive code string -blocking
  set alert [construct_alert $string]
  agent_send $email_agent {SEND OWNER $alert}

Message

(email

message)

Message

(file name and

size change)

Agent

Alert

File

Agent

File

Agent

Mail

Agent

Bald

Moose

Create
Create

Figure 7: The \alert" agent monitors a set of �les and sends an email message to the user
when the size of a �le changes signi�cantly. A simpli�ed version of the \alert" agent appears
at bottom. The network location of the various agents is shown at top.

11



itors a speci�ed set of remote resources and
noti�es its owner of any change in resource
status. The agent noti�es its owner via elec-
tronic mail. Figure 7 shows an \alert" agent
that monitors a set of �les and noti�es the
user if the size of a �le changes signi�cantly.
The agent creates one child agent for each re-
mote �lesystem. Each child monitors one or
more directories in its �lesystem and sends a
message to the parent when the size of a �le
changes signi�cantly. The parent then con-
tacts the user's \mail" agent to send the email
message.

Agent Tcl has also been used in three
information-retrieval applications. The �rst
application involves technical reports [Cai95];
the second involves text-based medical records
[Wu95]; and the third involves three-
dimensional drawings of mechanical parts
[Bha95, Coh95]. In all three cases the \doc-
uments" are distributed across a small net-
work. An agent is sent to each network site.
Each agent �nds the relevant documents at
its site and returns the relevant documents
to the home site for �nal processing and dis-
play. Each site provides a small set of retrieval
primitives that can be combined into complex
queries.

Transportable agents provide e�cient execu-
tion in all of these applications even though
the desired operations are not provided at the
remote sites and must be built up from low-
level primitives. This is particularly important
for the medical records and mechanical parts
since the queries are complex and varied and
it is unreasonable to expect a remote archive
to support all possible queries as atomic op-
erations. In addition transportable agents led
to extremely short development times since no
application-speci�c code had to be installed at
the remote sites (all of the necessary primitives
were already available for local use).

6 Future work

The �rst phase of future work is to implement
the remainder of the proposed architecture
and certain low-level services that are criti-
cal in a production-quality system [Gra95b].
Eight components must be implemented. The
�rst three are primarily programming tasks

while the last �ve address open research issues.

� Events. An event provides asynchronous
noti�cation of an important occurrence.
Events are needed to support inter-
rupts and event-driven languages such as
Tcl/Tk.

� Multiple languages and transport mecha-
nisms. We plan to incorporate (1) a func-
tional or declarative language such as Lisp
or Prolog to complement the imperative
language Tcl and to provide better sup-
port for applications in the arti�cial intel-
ligence community, and (2) an electronic-
mail transport mechanism to support Per-
sonal Digital Assistants (PDA). In addi-
tion it might become necessary to include
a more e�cient or structured imperative
language.

� Hierarchical namespace. A hierarchical
namespace will prevent naming con
icts
and will provide support for higher-level
services since we plan to follow the exam-
ple of Telescript and allow the adminis-
trator or developer to associate a distin-
guished agent with each node in the hier-
archy. The distinguished agent is noti�ed
of important events that occur within its
portion of the namespace. A typical event
would be an agent attempting to enter the
namespace. The event is allowed only if
the distinguished agent approves.

� Nonvolatile store. The nonvolatile store
backs up the internal state of executing
agents in case of node failure. The prob-
lem is to provide su�cient fault tolerance
while maintaining e�cient execution. We
need an incremental backup mechanism
that is used only at \key" points within
each agent.

� Security. There are two levels of secu-
rity. The �rst level involves the stan-
dard point-to-point issues of authenticat-
ing the sender of an agent and preventing
the agent from performing malicious ac-
tions. The second level involves all of the
security holes that appear when an agent
migrates through a sequence of machines.
For example, if an agent migrates from its
home machine to machine A and then to
machine B, machine B must be able to au-
thenticate the original sender of the agent

12



and must be able to verify that machine
A did not modify the agent in a malicious
way.

� Privacy. An agent might carry sensitive
information about its owner in order to
make e�ective decisions. This informa-
tion must be hidden from other agents
and from malicious machines. The latter
appears impossible so some information
must always remain at the home site.

� Network awareness. An agent should be
able to discover the current state of the
network and use this information to select
a migration strategy that takes it through
the required resources as quickly as pos-
sible while maintaining application con-
straints.

� Track moving agents. This is a lower-
level issue than resource discovery. Here
we are concerned with the fact that an
agent should be able to transparently con-
tinue communicating with a second agent
even if the second agent changes its net-
work location. We hope that the dis-
tinguished agents will form the basis for
this functionality. For example, if we
notify a distinguished agent whenever a
message is sent to a nonexistent name
in its portion of the namespace, it be-
comes straightforward to implement vir-
tual names. The distinguished agent
would forward all messages that are sent
to a moving agent's virtual name.

The second phase of future work is to identify
the higher-level services such as planning and
scheduling that are required in many appli-
cations and to implement agents that provide
these services.

7 Conclusion

We have described a transportable-agent sys-
tem called Agent Tcl that will address the
main weaknesses of existing systems. Agent
Tcl will run on standard hardware, support
multiple languages and transport mechanisms,
provide transparent migration and communi-
cation, and provide e�ective security and fault
tolerance in the uncertain world of the Inter-
net. Although implementation work is not

complete, Agent Tcl is in active use and has
allowed the rapid development of e�cient, dis-
tributed applications.

Availability

Agent Tcl versions 1.1 are available
at http://www.cs.dartmouth.edu/~rgray/

transportable.html.

Acknowledgements

Many thanks to my advisor, Professor George
Cybenko, and to Professor David Kotz and
Professor Daniela Rus for reading the various
incarnations of this paper and providing help-
ful criticism; to Saurab Nog for his preliminary
implementation of direct connections; to Ting
Cai, Yunxin Wu, Aditya Bhasin and Kurt Co-
hen for implementing the information-retrieval
agents; to the students in CS 188 for their de-
velopment and debugging e�orts; and to the
Air Force and Navy for their gracious �nan-
cial support (ONR contract N00014-95-1-1204
and AFOSR contract F49620-93-1-0266).

References

[Bel95] Marc Belgrave. The Uni�ed
Agent Architecture: A white
paper. Available at http://

www.ee.mcgill.ca/~belmarc/

agent_root.html, 1995.

[Bha95] Aditya Bhasin. Development
of an agent-based distributed
search system for three-
dimensional objects. Master's
thesis, Thayer School of En-
gineering, Dartmouth College,
1995.

[BN84] A. D. Birrell and B. J. Nel-
son. Implementing remote pro-
cedure calls. ACM Transac-
tions on Computer Systems,
2(1):39{59, February 1984.

[Cai95] Ting Cai. A technical report
agent. Technical report, De-
partment of Computer Science,

13



Dartmouth College, 1995. In
progress.

[Car94] Luca Cardelli. Obliq: A lan-
guage with distributed scope.
Digital White Paper, Digital
Equipment Corporation, Sys-
tems Research Center, 1994.

[CCeWB94] Phillip R. Cohen, Adam Chey-
er, Michelle Wang, and Soon
Cheol Baeg. An open agent ar-
chitecture. In Proceedings of
the AAAI Spring Symposium,
1994.

[CGH+95] David Chess, Benjamin Grosof,
Colin Harrison, David Levine,
Colin Parris, and Gene Tsudik.
Itinerant agents for mobile
computing. Technical Report
RC 20010, IBM T. J. Watson
Research Center, March 1995.
Revised October 17, 1995.

[Coe94] Michael D. Coen. Sod-
aBot: A software agent envi-
ronment and construction sys-
tem. In Yannis Labrou and
Tim Finin, editors, Proceed-
ings of the CIKM Workshop on
Intelligent Information Agents,
Third International Conference
on Information and Knowl-
edge Management (CIKM 94),
Gaithersburg, Maryland, De-
cember 1994.

[Coh95] Kurt Cohen. Feature extraction
and pattern analysis of three-
dimensional objects. Master's
thesis, Thayer School of En-
gineering, Dartmouth College,
1995.

[DiMMTH95] Giovanna Di Marzo, Murhi-
manya Muhugusa, Christian
Tschudin, and J�urgen Harms.
The Messenger paradigm and
its implications on distributed
systems. In Proceedings of
the ICC'95 Workshop on In-
telligent Computer Communi-
cation, 1995.

[Fal87] Joseph R. Falcone. A program-
mable interface language for
heterogeneous systems. ACM
Transactions on Computer Sys-
tems, 5(4):330{351, November
1987.

[Gai94] R. Stockton Gaines. Dixie lan-
guage design and intepreter is-
sues. In Proceedings of the
USENIX Symposium on Very
High Level Languages (VHLL),
Sante Fe, New Mexico, October
1994.

[GK94] Michael R. Genesereth and
Steven P. Ketchpel. Software
agents. Communications of the
ACM, 37(7):48{53, July 1994.

[Gra95a] Robert S. Gray. Agent Tcl: Al-
pha Release 1.1, 1995. Avail-
able at http://www.cs.

dartmouth.edu/~rgray/

transportable.html.

[Gra95b] Robert S. Gray. Ph.d. The-
sis Proposal: Transportable
agents. Technical Report
PCS-TR95-261, Department of
Computer Science, Dartmouth
College, 1995.

[Har95] Kenneth E. Harker. TIAS: A
Transportable Intelligent Agent
System. Technical Report
PCS-TR95-258, Department of
Computer Science, Dartmouth
College, 1995.

[JvRS95] Dag Johansen, Robbert van
Renesse, and Fred B. Scheid-
ner. Operating system support
for mobile agents. In Proceed-
ings of the 5th IEEE Work-
shop on Hot Topics in Operat-
ing Systems, 1995.

[KK94] Keith Kotay and David Kotz.
Transportable agents. In Yan-
nis Labrou and Tim Finin, ed-
itors, Proceedings of the CIKM
Workshop on Intelligent Infor-
mation Agents, Third Inter-
national Conference on Infor-
mation and Knowledge Man-

14



agement (CIKM 94), Gaith-
ersburg, Maryland, December
1994.

[Nog95] Saurab Nog. TCP/IP con-
nections in Agent Tcl. Class
Project, CS 108: Arti�cial In-
telligence, Department of Com-
puter Science, Dartmouth Col-
lege, 1995.

[Ous94] John K. Ousterhout. Tcl
and the Tk Toolkit. Addison-
Wesley Professional Computing
Series. Addison-Wesley, Read-
ing, Massachusetts, 1994.

[Rei94] Andy Reinhardt. The network
with smarts. Byte, pages 51{64,
October 1994.

[Sah94] Adam Sah. TC: An e�cient
implementation of the Tcl lan-
guage. Master's thesis, Univer-
sity of California at Berkeley,
May 1994. Available as tech-
nical report UCB-CSD-94-812.

[SBD94] Adam Sah, Jon Blow, and
Brian Dennis. An introduction
to the Rush language. In Pro-
ceedings of the 1994 Tcl Work-
shop, June 1994.

[SG90] J. Stamos and D. Gi�ord. Re-
mote evaluation. ACM Trans-
actions on Programming Lan-
guages and Systems, 12(4):537{
565, October 1990.

[Sho93] Yoav Shoham. Agent oriented
programming. Journal of Arti-
�cial Intelligence, 1993.

[SS94] Mukesh Singhal and Niran-
jan G. Shivaratri. Advanced
concepts in operating systems:
Distributed, database and mul-
tiprocessor operating systems.
McGraw-Hill Series in Com-
puter Science. McGraw-Hill,
New York, 1994.

[Sto94] A. D. Stoyenko. SUPRA-
RPC: SUbprogram PaRAm-
eters in Remote Procedure
Calls. Software-Practice and

Experience, 24(1):27{49, Jan-
uary 1994.

[Sun94] The Java language: A white
paper. Sun Microsystems
White Paper, Sun Microsys-
tems, 1994.

[TDiMMH94] Christian Tschudin, Gio-
vanna Di Marzo, Murhimanya
Muhugusa, and J�urgen Harms.
Messenger-based operating sys-
tems. Technical report, Uni-
versity of Geneva, Switzerland,
1994.

[Way95] Peter Wayner. Agents Un-
leashed: A public domain look
at agent technology. AP Pro-
fessional, Chestnut Hill, Mas-
sachusetts, 1995.

[Whi94] James E. White. Telescript
technology: The foundation
for the electronic marketplace.
General Magic White Paper,
General Magic, Inc., 1994.

[Whi95a] James E. White. Telescript
technology: An introduction to
the language. General Magic
White Paper, General Magic,
1995.

[Whi95b] James E. White. Telescript
technology: Scenes from the
electronic marketplace. Gen-
eral Magic White Paper, Gen-
eral Magic, 1995.

[Wu95] Yunxin Wu. Advanced algo-
rithms of information organiza-
tion and retrieval. Master's the-
sis, Thayer School of Engineer-
ing, Dartmouth College, 1995.

[WVF89] C. Daniel Wolfson, Ellen M.
Voorhees, and Maura M. Flat-
ley. Intelligent routers. In
Proceedings of the Ninth In-
ternational Conference on Dis-
tributed Computing Systems,
pages 371{376. IEEE, June
1989.

15


