
Copyright 1996 by Robert S. Gray.
In the Proceedings of the 1996 USENIX Tcl/Tk Workshop, July 1996, pages 9-23.
Available at <http://agent.cs.dartmouth.edu/papers/gray:security.ps.Z>.

Agent Tcl: A
exible and secure mobile-agent system

Robert S. Gray�

Department of Computer Science

Dartmouth College

Hanover, New Hampshire 03755

robert.s.gray@dartmouth.edu

Abstract

An information agent manages all or a portion of a
user's information space. The electronic resources
in this space are often distributed across a network
and can contain tremendous quantities of data. Mo-
bile agents provide e�cient access to such resources
and are a powerful tool for implementing informa-
tion agents. A mobile agent is an autonomous pro-
gram that can migrate from machine to machine in
a heterogeneous network. By migrating to the loca-
tion of a resource, the agent can access the resource
e�ciently even if network conditions are poor or the
resource has a low-level interface. Telescript is the
best-known mobile-agent system. Telescript, how-
ever, requires the programmer to learn and work
with a complex object-oriented language and a com-
plex security model. Agent Tcl, on the other hand,
is a simple,
exible, and secure system that is based
on the Tcl scripting language and the Safe Tcl ex-
tension. In this paper we describe the architecture
of Agent Tcl and its current implementation.

1 Introduction

An information agent is charged with the task of
managing all or a portion of a user's information
space. The electronic resources in this space are
often distributed across a network and can contain
tremendous quantities of data. Mobile agents allow
e�cient access to such resources and are a powerful
tool for implementing information agents. A mo-
bile agent is a program that can migrate under its
own control from machine to machine in a hetero-
geneous network. In other words, an agent can sus-
pend its execution at any point, transport its code

�Supported by AFOSR contract F49620-93-1-0266 and
ONR contract N00014-95-1-1204. A small section of this pa-
per appeared in [Gra95].

and state to another machine, and resume execu-
tion on the new machine. By migrating to the lo-
cation of an electronic resource, an agent can access
the resource locally and can eliminate the network
transfer of all intermediate data. Thus the agent
can access the resource e�ciently even if network
conditions are poor or the resource has a low-level
interface. This e�ciency, combined with the fact
that an agent does not require a permanent con-
nection with its home site, makes agents particu-
larly attractive for mobile computing since roving
devices often have a low-bandwidth, unreliable con-
nection into the network. Mobile agents also ease
the development, testing and deployment of dis-
tributed applications since they hide the communi-
cation channels but not the location of the compu-
tation [Whi94], they eliminate the need to detect
and handle network failure except during migration,
and they can dynamicallydistribute and redistribute
themselves throughout the network. Mobile agents
move the programmer away from the rigid client-
server model to the more
exible peer-peer model
in which programs communicate as peers and act
as either clients or servers depending on their cur-
rent needs [Coe94]. Finally, anecdotal evidence sug-
gests that mobile agents are easier to understand
than many other distributed-computing paradigms.
Existing applications for mobile agents include elec-
tronic commerce, active documents and mail, infor-
mation retrieval, work
ow and process management,
and network management [Whi94, Ous95]. Potential
applications include most distributed applications,
particularly those that must run on disconnected
platforms or that must invoke multiple operations
at each remote site [Whi94, Ous95].

The advantages and potential applications of mo-
bile agents have led to a
urry of recent imple-
mentation work. Notable systems include Tele-
script from General Magic, Inc. [Whi94], Tacoma

from the University of Cornell [JvRS95], SodaBot
from MIT [Coe94] and ARA from the University of
Kaiserslautern [Pei96]. These systems su�er from
a range of weaknesses. Telescript provides a com-
plex, object-oriented language and a complex secu-
rity model in which the programmer must carefully
identify and disallow dangerous actions. Tacoma
and SodaBot provide high-level scripting languages
(Tcl and SodaBotL respectively) that are much eas-
ier to learn and use. In addition, Tacoma uses the
Horus toolkit to provide signi�cant fault tolerance.
Tacoma, however, requires the programmer to ex-
plicitly capture state information before migration.
Tacoma and SodaBot only partially address secu-
rity issues | Tacoma via simple encryption and
SodaBot via minimal user control over resource us-
age | and do not provide low-level communication
mechanisms, forcing some communication to take
place outside of the agent framework. Finally, al-
though the scripting languages of Tacoma and Sod-
aBot are su�cient for most tasks, the lack of a
faster language makes them unsuitable for speed-
critical applications. ARA strikes a balance between
the Telescript and Tacoma extremes by providing
multiple languages, a framework for incorporating
additional languages, and low-level communication
mechanisms. ARA, however, has not been released
and does not address security issues.

Agent Tcl is a mobile-agent system that is under
development at Dartmouth College [Gra95]. Agent
Tcl, like ARA, attempts to strike a balance among
existing systems. Agent Tcl uses the
exible script-
ing language Tcl as its main language but provides
a framework for incorporating additional languages.
Agent Tcl provides migration and communication
primitives that do not require the programmer to ex-
plicitly capture state information and that hide the
actual transport mechanisms but that are low-level
enough to be used as building blocks for a range of
protocols. Agent Tcl uses the simple Safe Tcl se-
curity model to protect a machine from a malicious
agent and agents from each other. Agent Tcl al-
lows agents to migrate from machine to machine or
remain stationary and access resources from across
the network, to create child agents to perform sub-
tasks, and to communicate with other agents on the
local and remote machines. It is intended as a gen-
eral environment for distributed applications, both
in the Tcl/Tk and larger computing communities,
with the application developer selecting the migra-
tion, communication and creation strategy that is
best for the given network, resources and task. Al-
though Agent Tcl is far from complete, it is in ac-

tive use at several sites and has been used in several
information-management applications. These appli-
cations demonstrate the convenience and e�ciency
of mobile agents.
Section 2 presents the Agent Tcl architecture.

Section 3 describes the selection of Tcl as the \main"
agent language and the current implementation.
Section 4 discusses the security concerns associated
with mobile code, our current Safe Tcl security
mechanisms, and the security mechanisms that must
be added to provide su�cient protection for both the
machines and the agents. Finally, Sections 5 and 6
brie
y examine several information-management ap-
plications and highlight future work.

2 Architecture

Agent Tcl has four main goals:

� Reduce migration to a single instruction like the
Telescript go and allow this instruction to oc-
cur at arbitrary points. The instruction should
not require the programmer to explicitly cap-
ture state information and should hide the ac-
tual transport mechanisms.

� Provide transparent communication among
agents. The communication primitives should
be
exible and low-level but should hide the ac-
tual transport mechanisms.

� Support multiple languages and transport
mechanisms and allow the straightforward addi-
tion of a new language or transport mechanism.

� Provide e�ective security in the uncertain world
of the Internet.

The architecture of Agent Tcl is shown in Figure
1. The architecture builds on the server model of
Telescript [Whi94], the multiple languages of ARA
[Pei96], and the transport mechanisms of two pre-
decessor systems at Dartmouth [Har95, KK94]. The
architecture has four levels. The lowest level is an
API for the available transport mechanisms. The
second level is a server that runs at each network
site. The server performs the following tasks:

� Status. The server keeps track of the agents that
are running on its machine and answers queries
about their status.

� Migration. The server accepts each incoming
agent, authenticates the identity of its owner,

Security
State

capture

Interpreter

Server

API

TCP/IP

Tcl

Electronic
mail

Java...

Server or engine

...

Agents

Figure 1: The architecture of Agent Tcl. The four levels consist of an API for the available transport
mechanisms, a server that accepts incoming agents and mediates agent communication, an interpreter for
each supported language, and the agents themselves.

and passes the authenticated agent to the ap-
propriate interpreter. The server selects the
best transport mechanism for each outgoing
agent.

� Communication. The server provides a hierar-
chical namespace for agents and allows agents to
send messages to each other within this names-
pace. The topmost division of the namespace is
the network location of the agent. A message
is an arbitrary sequence of bytes with no prede-
�ned syntax or semantics except for two types
of distinguished messages. An event message
provides asynchronous noti�cation of an impor-
tant occurrence while a connection message re-
quests or rejects the establishment of a direct
connection. A direct connection is a named
message stream between agents and is more
convenient and e�cient than message passing
(since the programmer can watch for messages
on a particular stream and the server often can
hand control of the stream to the interpreter).
The server bu�ers incoming messages, selects
the best transport mechanism for outgoing mes-
sages, and creates a named message stream once
a connection request has been accepted.

� Nonvolatile store. The server provides access
to a nonvolatile store so that agents can back
up their internal state as desired. The server
restores the agents from the nonvolatile store in
the event of machine failure.

As in Tacoma all other services will be provided
by agents. Such services include navigation, net-
work sensing, group communication, fault tolerance,
location-independent addressing, and access con-
trol. The most important service agents in our im-
plemented prototype are resource manager agents
which guard access to critical system resources such
as the screen, network and disk. These resource
managers are discussed in the security section.

The third level of the Agent Tcl architecture con-
sists of one interpreter for each available language.
We say interpreter since it is expected that most
of the languages will be interpreted due to porta-
bility and security constraints (although \just-in-
time" compilation is feasible for languages such as
Java). Each interpreter has four components | the
interpreter itself, a security module that prevents
an agent from taking malicious action, a state mod-
ule that captures and restores the internal state of
an executing agent, and an API that interacts with
the server to handle migration, communication, and
checkpointing. Adding a new language consists of
writing the security module, the state-capture mod-
ule and a language-speci�c wrapper for the generic
API. The security module does not determine ac-
cess restrictions but instead ensures that an agent
does not bypass the resource managers or violate the
restrictions imposed by the resource managers. The
state-capture module must provide two functions for
use in the generic API. The �rst, captureState, takes
an interpreter instance and constructs a machine-
independent byte sequence that represents its inter-

nal state. The second, restoreState, takes the byte
sequence and restores the internal state. The top
level of the Agent Tcl architecture consists of the
agents themselves.

3 Tcl and Agent Tcl

The architecture has not been completely imple-
mented. The current implementation does not pro-
vide event messages or the nonvolatile store and has
a single language (Tcl), a single transport mecha-
nism (TCP/IP), and a
at rather than hierarchi-
cal namespace. It does provide migration, mes-
sage passing and direct connections, and has suf-
�cient security mechanisms to protect a machine
from a malicious agent and to protect agents from
each other. Incoming agents are authenticated using
Pretty Good Privacy (PGP) [KPS95]; resource man-
ager agents assign access restrictions based on this
authentication; and Safe Tcl enforces these restric-
tions as the agent executes [BR]. Here we discuss
the selection of Tcl as the main agent language and
the details of the base system. We discuss security
in the next section.

3.1 Tcl

Tcl is a high-level scripting language that was devel-
oped in 1987 and has enjoyed enormous popularity
[Wel95]. Tcl has several advantages as a mobile-
agent language. Tcl is easy to learn and use due to
its elegant simplicity and an imperative style that is
immediately familiar to any programmer. Tcl is in-
terpreted so it is highly portable and easier to make
secure. Tcl can be embedded in other applications,
which allows these applications to implement part of
their functionality with mobile Tcl agents. Finally,
Tcl can be extended with user-de�ned commands,
which makes it easy to tightly integrate agent func-
tionality with the rest of the language and allows a
resource to provide a package of Tcl commands that
an agent uses to access the resource. A package of
Tcl commands is more e�cient than encapsulating
the resource within an agent and is an attractive
alternative in certain applications.
Tcl has several disadvantages. Tcl is a high-level,

interpreted language so it is much slower than na-
tive machine code. In addition, Tcl provides no
code modularization aside from procedures, which
makes it di�cult to write and debug large scripts.
These disadvantages have not been a hindrance so
far since mobile agents tend to involve high-level re-
source access wrapped with straightforward control

logic, a situation for which Tcl is uniquely suited.
A mobile Tcl agent is usually short even if it per-
forms a complex task, and is usually more than ef-
�cient enough when compared to resource and net-
work latencies. In addition, several groups are work-
ing on structured-programming extensions to Tcl
and on faster Tcl interpreters [Sah94]. Tcl is not
suitable for every mobile-agent application, however,
such as performing search operations against large,
distributed collections of numerical data. For this
reason, Agent Tcl includes a framework for incor-
porating additional languages. We are using this
framework to add support for the new Java language
[Sun94]. Java is much more structured than Tcl and
has the potential to run at near-native speed through
\just-in-time" compilation. We expect, however,
that Tcl will continue to be the main agent language
and that Java will be used only for speed-critical
agents (or portions of agents).

The main disadvantage of Tcl is that it provides
no facilities for capturing the complete internal state
of an executing script. Such facilities are essential for
providing transparent migration at arbitrary points.
Adding these facilities to Tcl was straightforward
but required the modi�cation of the Tcl core. The
basic problem is that the Tcl core evaluates a script
by making recursive calls to Tcl Eval. The handler
for the while command, for example, recursively
calls Tcl Eval in order to evaluate the body of the
loop. Thus a portion of the script's state is on the
C runtime stack and is not easily accessible. Our
solution adds an explicit stack to the Tcl core. We
split the command handlers into one or more sub-
handlers where there is one subhandler for each code
section before or after a call to Tcl Eval. Each call
to Tcl Eval is replaced with a push onto the stack.
Tcl Eval iterates until the stack is empty and always
calls the current subhandler for the command at the
top of the stack. The subhandlers are responsible
for specifying when the command has �nished and
should be popped. Figure 2 illustrates this process
for the while command.

It is important to note that the modi�ed Tcl
core is compatible with the standard Tcl core. A
command procedure that makes a recursive call to
Tcl Eval will work correctly on top of the modi�ed
core; it will just be impossible to capture the script's
complete state when that command procedure is on
the invocation stack. This means that existing Tcl
extensions will work without modi�cation (as long
as the extension does not use the tclInt.h header
�le). An extension has to be modi�ed only if the
developer wants an agent to be able to carry the

WHILE_EXPRESSION while expr body WHILE_EXPRESSION

if (expr)

else

 set flag to NEXT_COMMAND

 set flag to WHILE_BODY

 push body onto stackwhile expr bodyWHILE_BODY

bodyPARSE_COMMAND

while expr bodyWHILE_BODY

Command

WHILE_BODY

if (error in body)

 set flag to NEXT_COMMAND

 set flag to WHILE_EXPRESSION

else

evaluate and pop body

Flag

Figure 2: An example of how the stack works. The command stack is on the left and the two subhandlers for
the while command are on the right. A subhandler sets the NEXT COMMAND
ag when the while command
has �nished and should be popped.

extension's state from machine to machine. In this
case, the developer must make the same changes as
for the while command and must provide callback
routines for state capture and restoration.

The explicit stack is simpler and more
exible
than the ARA solution, in which the C runtime stack
must be captured in a portable way and the Tcl in-
terpreter on the destination machine must contain
the same set of C functions [Pei96]. On the other
hand, the explicit stack is less e�cient. Our mod-
i�ed Tcl core runs Tcl programs approximately 20
percent slower than the standard Tcl core, whereas
ARA's modi�ed Tcl core imposes little additional
overhead. It appears that this performance penalty
can be reduced signi�cantly with additional opti-
mization, however, and it would also be possible to
include both the standard and modi�ed Tcl cores
within the same interpreter so that an agent could
run on top of the standard, faster core if it did not
want to migrate in mid-execution.

Once the explicit stack was available, it became

trivial to write procedures that save and restore the
internal state of a Tcl script. These two procedures
are the heart of the state-capture module for the
Tcl interpreter. They capture and restore the stack,
the procedure call frames, and all de�ned variables
and procedures. Such things as open �les and linked
variables are currently ignored.
The advantages of Tcl are strong and the disad-

vantages are either easily overcome or do not a�ect
most agents. Thus Tcl was chosen as the main lan-
guage for the Agent Tcl system. The same advan-
tages have led to the use of Tcl in other mobile-agent
systems such as Tacoma [JvRS95] and ARA [Pei96].

3.2 Agent Tcl

The current implementation of Agent Tcl has two
components. The �rst component is the server that
runs at each network site. The server accepts, au-
thenticates and starts incoming agents, bu�ers in-
coming messages, provides the
at namespace, and
answers queries about the status of the agents that

are running on its machine. The server is imple-
mented as two cooperating processes. One process
watches the network while the other maintains a ta-
ble of running agents.

The second component consists of a modi�ed ver-
sion of Tcl 7.5 and a Tcl extension. The modi�ed
version of Tcl 7.5 provides the explicit stack and
the state-capture routines. The extension provides
the commands that an agent uses to migrate, com-
municate, and create child agents. The most im-
portant commands are agent begin, agent submit,
agent jump, agent send, agent receive,
agent meet, agent accept, and agent end. Inter-
nally each command uses the server API to contact
an agent server, transfer an agent, message or re-
quest, and wait for a response. The main di�erence
between the current implementation and the pro-
posed architecture is that when migrating, creating
a child agent, or sending a message, the current im-
plementation bypasses the local server and interacts
directly with the destination server over TCP/IP.
This approach was adopted to simplify the initial
implementation and will change as additional trans-
port mechanisms are added.

An agent is simply a Tcl script that runs on top
of the modi�ed version of Tcl 7.5. The agent uses
the agent begin command to register with a server
and obtain a name in the
at namespace. A name
currently consists of the IP address of the server,
a unique integer, and an optional symbolic name
that the agent speci�es later with the agent name

command. The agent submit command is used to
create a child agent on a particular machine. The
agent submit command accepts a Tcl script, en-
crypts and digitally signs the script, and sends the
script to the destination server. The server au-
thenticates this agent, selects a name for the agent,
and starts a Tcl interpreter in which to execute the
agent. If the agent wants a symbolic name as well
as a unique, integer identi�er, it can call agent name

once it starts executing. The agent jump command
migrates an agent to a particular machine. The
agent jump command captures the internal state of
the agent, encrypts and digitally signs the state im-
age, and sends the state image to the destination
server. The server authenticates this agent, selects
a new name for the agent, and starts a Tcl inter-
preter. The Tcl interpreter restores the state image
and resumes agent execution at the statement im-
mediately after the agent jump.

The agent send and agent receive commands
are used to send and receive messages. The
agent meet and agent accept commands are used

to establish a direct connection between agents. A
direct connection is a named message stream. Di-
rect connections are not required for communica-
tion but are more e�cient and convenient as noted
above. The source agent uses agent meet to send
a connection request to the destination agent. The
destination agent uses agent accept to receive the
connection request and send either an acceptance or
rejection. An acceptance includes a TCP/IP port
number to which the source agent connects. The
protocol works even if both agents use agent meet.
The agent with the lower IP address and integer
identi�er selects the port and the other agent con-
nects to that port. A
exible RPC mechanism has
been built on top of the direct connection mecha-
nism [NCK96]. The server will take on more of the
responsibility for establishing a direct connection as
additional transport mechanisms are added.
Agent Tcl also includes a (slightly) modi�ed ver-

sion of Tk 4.1 so that an agent can present a graphi-
cal interface and interact with the user of its current
machine. Event handlers can be associated with in-
coming messages and with direct connections.

4 Security in Agent Tcl

A mobile agent is a program that moves from ma-
chine to machine and executes on each. Neither the
agent nor the machines are necessarily trustworthy.
The agent might try to harm the machine or ac-
cess privileged resources. The machines might try to
pull sensitive information out of the agent or change
the behavior of the agent by removing, modifying
or adding to its data and code. Whether the agents
and machines are actively malicious or programmed
poorly, the end e�ect is the same. A mobile-agent
system must provide security mechanisms that de-
tect and prevent malicious actions. Without strong
security mechanisms, a mobile-agent system will jus-
ti�ably never be accepted and used. Security is per-
haps the most critical issue in a mobile-agent system
and can be divided into four interrelated problems:

� Protect the machine. The machine should be
able to authenticate the agent's owner, assign
access permissions based on this authentication,
and prevent any violation of the access permis-
sions.

� Protect other agents. An agent should not be
able to interfere with another agent or steal
that agent's resources. This problem can be
viewed as a subproblem of protecting the ma-
chine, since as long as an agent cannot subvert

the agent-communication mechanisms and can-
not consume or hold excessive system resources,
it will be unable to a�ect another agent unless
that agent chooses to communicate with it.

� Protect the agent. A machine should not be able
to tamper with an agent or pull sensitive infor-
mation out of the agent without the agent's co-
operation. Clearly it is impossible to prevent a
machine from doing whatever it wants with an
agent that is currently executing on that ma-
chine. Instead we must detect tampering as
soon as the agent migrates from amaliciousma-
chine back to an honest machine and terminate
or �x the agent if tampering has occurred. In
addition we must ensure (1) that the sensitive
information never passes through an untrusted
machine in an unencrypted form, (2) that the
information is meaningless without cooperation
from a trusted site, or (3) that theft of the infor-
mation is not catastrophic and can be detected
via an audit trail.

� Protect a group of machines. An agent might
consume excessive resources in the network as a
whole even if it consumes few resources at each
machine. Obvious examples are an agent that
roams through the network forever or an agent
that creates two child agents, each of which cre-
ates two child agents in turn, and so on. An
agent and its children should eventually be un-
able to obtain any resources anywhere and ter-
minated.

All of these problems have been considered in the
mobile-agent literature [LO95, CGH+95, TV96] al-
though only the �rst two have seen signi�cant im-
plementation work. These same two problems are
addressed in the current implementation of Agent
Tcl using PGP [KPS95] and Safe Tcl [BR]. First we
present the current implementation and then poten-
tial solutions for the remaining two security prob-
lems.

4.1 Authentication

Authentication in Agent Tcl is based on PGP
(Pretty Good Privacy) which is in widespread use
despite controversies over export restrictions and
patents [KPS95]. PGP encrypts a �le or mail mes-
sage using the IDEA private-key algorithm and a
randomly chosen private key, encrypts the private
key using the RSA public-key algorithm and the re-
cipient's public key, and then sends the encrypted
key and �le to the recipient. PGP optionally adds

a digital signature by computing an MD-5 crypto-
graphic hash of the �le or mail message and encrypt-
ing the hash value with the sender's private key. Al-
though PGP is oriented towards interactive use, it
can be used in an agent system with small modi�-
cations. In the current implementation we run PGP
as a separate process, save the data to be encrypted
into a �le, ask the PGP process to encrypt the �le,
and then transfer the �le to the destination server.
This structure is much less e�cient than tightly in-
tegrating PGP with the rest of the system, but is
simpler and more
exible, especially since it becomes
trivial to create an Agent Tcl distribution that does
not include PGP or that uses di�erent encryption
software [Way95].

When an agent registers with a server using the
agent begin command, the registration request is
digitally signed used the owner's private key, en-
crypted using the server's public key, and sent to the
server. The server makes sure that the agent's owner
is allowed to register on its machine and records the
authenticated identity of the agent's owner. Then
the IDEA private key is used as a session key for all
further communication between the agent and its
newly registered server. The session key is needed
to prevent a malicious program from contacting the
server and masquerading as an existing agent. When
the agent and its registered server are on the same
machine (which is the predominant case), we do not
actually encrypt with the session key since there is
no possibility of message interception; instead the
session key is simply included in the message and
compared against the server's recorded session key.
A sequence number is included in the messages to
prevent replay attacks.

When an agent migrates using the agent jump

command, it is digitally signed with the current
server's private key and encrypted with the recipi-
ent server's public key. As in Telescript, we digitally
sign using the server's private key since the owner's
private key is unavailable once the agent leaves its
home machine [TV96]. This approach requires the
servers to have a high degree of trust in each other,
so we will eventually adopt the Itinerant Agent so-
lution [CGH+95], in which as much of the agent as
possible is encrypted with the owner's private key
on creation and remains encrypted throughout the
agent's lifetime. The identity of the agent's owner
is included in the migration message. The recipi-
ent server chooses whether to believe that identity
based on its trust in the sending server. If the server
accepts the agent, it records the apparent identity
of the agent's owner, the authenticated identity of

the sending server, and its degree of con�dence that
the owner's identity is valid. A session key is used
for all further agent-server communication as in the
agent begin case. The same steps occur when a
child agent is created with the agent submit com-
mand except that a Tcl script is encrypted rather
than a Tcl state image. The same steps also occur
when an agent sends a message to an agent on an-
other machine. In the case of a direct connection,
the IDEA private key from the acceptance message
becomes the session key for the direct connection. A
sequence number associated with the direct connec-
tion prevents replay attacks.

There are two weaknesses with the current im-
plementation. First, there is no automatic distri-
bution mechanism for the PGP public keys. Each
server must already know all possible public keys so
that it can authenticate incoming agents. An auto-
matic distribution mechanism must be added when
we start to use Agent Tcl in wide-area networks.
Second, the system is vulnerable to replay attacks
in which an attacker replays a migrating agent or
any message sent from one agent to another (out-
side of a direct connection). An obvious solution is
for each server to have a distinct sequence number
for all servers with which it is in contact.

4.2 Authorization and enforcement

Once the identity of an agent's owner has been deter-
mined, the system must impose access restrictions
on the agent (authorization) and ensure that the
agent does not violate these restrictions (enforce-
ment). In other words, the system must guard access
to all available resources. We divide resources into
two types. Indirect resources can only be accessed
through another agent. Builtin resources are directly
accessible through language primitives for reasons
of e�ciency or convenience or simply by de�nition.
Builtin Tcl/Tk resources include the screen, the �le
system, wall-clock time and CPU time.

For indirect resources, the agent that controls
the resource enforces the relevant access restric-
tions. For each message from another agent, the
local server attaches to the message a 5-tuple that
contains the apparent identity of the agent's owner,
the apparent identity of the sending server, a
ag
that indicates whether the owner could be authen-
ticated, a
ag that indicates whether the sending
server could be authenticated, and a numerical con-
�dence level that represents howmuch trust the local
server places in the sending server. The agent uses
this 5-tuple along with its own internal access lists

to respond appropriately to the incoming message.

For builtin resources, security is maintained using
Safe Tcl and a set of resource manager agents. Safe
Tcl is a Tcl extension that is designed to allow the
safe execution of untrusted Tcl scripts [BR]. Safe
Tcl provides two interpreters. One interpreter is a
\trusted" interpreter that has access to the stan-
dard Tcl/Tk commands. The other interpreter is
an \untrusted" interpreter from which all dangerous
commands have been removed. The untrusted script
executes in the untrusted interpreter. Dangerous
commands include obvious things such as opening or
writing to a �le, creating a network connection, and
creating a toplevel window. Dangerous commands
also include more subtle things such as ringing the
bell, raising and lowering a window, and maximizing
a window so that it covers the entire screen. Some
of the subtle security risks do not actually involve
damage to the machine or access to privileged infor-
mation but instead involve serious annoyance for the
machine's owner. The idea with this type of secu-
rity risk is to restrict the number of times per second
that the agent can initiate the event itself, or to re-
strict the agent to its own window in which it can
do whatever it wants but whose size and position it
can not a�ect.

Although the dangerous commands have been re-
moved from the untrusted interpreter, we do not
want to deny all access to the resources associated
with these commands. Thus, instead of removing
a dangerous command entirely, Safe Tcl can re-
place the command with a link to a command in
the trusted interpreter. This trusted command ei-
ther severely restricts the functionality of the origi-
nal command or examines the command arguments
and the identity of the script's owner to determine
if the command should be allowed.

Agent Tcl uses the generalization of Safe Tcl that
appears in the Tcl 7.5 core [LO95]. Agent Tcl cre-
ates a trusted and untrusted interpreter for each in-
coming agent. The agent executes in the untrusted
interpreter. All dangerous commands have been re-
moved from the untrusted interpreter and replaced
with links to secure versions in the trusted inter-
preter. These secure versions check a set of access
lists to see if the command is allowed. In the current
implementation there is an access list for wall-clock
and CPU time, the screen, the network, the �le sys-
tem, and external programs. Each access list is a set
of (name, quantity) pairs where name speci�es the
name of the required resource and quantity speci�es
the number of instances of that resource (if applica-
ble). The screen access list, for example, might con-

tain the pair (toplevel, 5), which indicates that the
agent can have no more than �ve toplevel windows.
The program access list might contain the pair (ls,
()) which indicates that the agent is allowed to exe-
cute the Unix ls program. Initially the access lists
are empty except that the agent is given a minimal
amount of wall-clock and CPU time (our modi�ed
Tcl interpreter aborts a script if the script exceeds
the time limits). To obtain additional time or to ob-
tain access to other builtin resources, the agent must
explicitly or implicitly ask a resource manager agent
for permission. There are �ve resource managers in
the current system. These managers correspond to
the �ve access lists and control access to wall-clock
and CPU time, the screen, the network, the �le sys-
tem, and external programs.

An agent uses the require command to explic-
itly ask a resource manager for access. The require
command takes the symbolic name of the resource
manager | e.g., screen| and a list of (name, quan-
tity) pairs which specify the desired access permis-
sions | e.g., (toplevel, 5), (screen area, 30 percent).
The require command is actually just a link to a
procedure in the trusted interpreter. This proce-
dure contacts the appropriate resource manager and
passes the list of access requests to the resource man-
ager. The procedure waits for the response and then
adds each access request to the internal access lists,
indicating for each whether the request was granted
or denied.

To implicitly ask a resource manager for access, an
agent simply calls a command that uses the resource.
For example, if the agent issues the command exec

ls, the exec procedure in the trusted interpreter
checks the program access list. If permission to ex-
ecute ls has already been granted, the command
proceeds. If permission to execute ls has already
been denied, the command aborts with a security
error. Otherwise the command contacts the program
resource manager and either proceeds or aborts de-
pending on the manager's response. Although these
implicit access restrictions are convenient, the agent
should use the require commandwhenever possible
so that it can determine whether a required resource
is available before it tries to use the resource.

Our implementation does not yet provide a safe
version of all dangerous commands. For example, an
agent that arrives from another machine can not use
the source and send commands (the send command
will probably never be available since it is di�cult to
make secure and agents should communicate within
the agent framework anyways). In addition, the \an-
noyance" security threats have not been eliminated.

Rather than restricting the use of all associated com-
mands, we plan to provide each agent with a virtual
screen in which it can do whatever it wants but that
only the user can move and resize. Although the
annoyance threats remain, Agent Tcl currently pro-
tects the machine well using the simple kernel-user
model of Safe Tcl. No direct access to system re-
sources is possible. There is no way for an agent to
subvert the resource-manager system since there is
no way for the agent to modify the access lists con-
tained in the trusted interpreter; it is possible for
the agent to contact a resource manager directly, but
this accomplishes nothing since the response (1) will
correctly grant or deny access and (2) even so will
not be added to the access lists. In our case, Safe Tcl
is the mechanism for enforcing the policy provided
by the resource managers. When Java is added to
the system, the existing Java security mechanisms
will be used to enforce the same policy provided by
the same resource managers.

In addition to the resource managers, Agent Tcl
includes a console agent, which is used primarily
on machines that have a speci�c owner. The con-
sole agent has two purposes. First, it tracks all of
the agents that are running on the machine, and al-
lows the machine's owner to deny entry to incoming
agents and to terminate running agents. Second, it
provides a pathway through which a resource man-
ager can ask the owner whether an agent should be
able to perform a particular action. The owner will
eventually be able to specify exactly those situations
in which she should be asked.

4.3 Future security work

There are three areas of future work. First, we plan
to add a hierarchical system of resource managers.
This will become particularly important as we move
towards the Telescript model in which there are mul-
tiple virtual places per machine [Whi94]. Each place
might have its own security policy while the machine
has an overall security policy. Second, we must pro-
tect an agent from malicious machines. Here we are
exploring the suggestions from [CGH+95] in which
an agent is divided into components and each com-
ponent is encrypted and signed separately for all or
part of the journey. This scheme allows immedi-
ate detection of blatant tampering, such as dropping
part of the agent or inserting an entirely new pro-
cedure, and prevents blatant theft of sensitive data.
In addition we plan to record an audit trail that
can be analyzed to determine the point at which a
failed agent might have been modi�ed inappropri-

ately. For more subtle modi�cation threats, such as
modifying a piece of data that changes on every ma-
chine and thus must be unencrypted, solutions are
less clear and may be impossible. Third, we must
protect a group of machines from a malicious agent.
Here we are looking at a currency-based resource-
allocation scheme in which an agent's owner gives
the agent a �nite currency supply from her own �-
nite currency supply. The currency does not have
to be tied to legal currency, but it should be im-
possible to spend a currency unit more than once.
The agent must spend currency in order to access re-
sources and must divide its own currency among its
children. The agent and its children will eventually
run out of currency and terminate. Such currency
schemes already exist in the context of electronic
commerce [Way95].

5 Applications

Figure 3 shows the \who" agent which illustrates
the agent commands. The agent's task is to deter-
mine which users are logged onto a set of machines.
The agent uses agent submit to create a child agent.
The child agent jumps from machine to machine us-
ing agent jump and executes the Unix who command
on each machine. The child then sends the list back
to its parent with agent send. The parent has been
waiting for the list with agent receive and displays
the list to the user.
Although its task is simple and can be accom-

plished easily without a mobile agent, the \who"
agent illustrates the general form of any agent that
migrates through a sequence of machines. Exist-
ing Agent Tcl agents that fall into this category
are a work
ow agent that carries an electronic form
from user to user [CGN96] and a medical agent that
retrieves distributed medical records based on cer-
tain criteria [Wu95]. The work
ow agent must mi-
grate sequentially since the users need to �ll out
the sections of the form in order. The medical-
retrieval agent chooses to migrate sequentially since
the agent can discard potential candidates as it trav-
els through the distinct databases; spawning one
child agent per remote database or interacting with
the databases using the traditional client/server ap-
proach increases the total network tra�c even when
only a single operation is being performed against
each database.
Like the \who" agent, the work
ow and medical

agents do not require continuous contact with the
homemachine and will continue their task even if the
home machine becomes temporarily disconnected.

In addition, the work
ow and medical agents are ex-
tremely easy to implement within the agent frame-
work. The code is written as if every resource is
local to the agent; the only di�erence is that the
agent jump command is used to move the agent from
one machine to the next. The agent jump command
is not strictly necessary since we could continually
resubmit a Tcl procedure that was parameterized
according to the current status of the task; the pro-
cedure would use the parameters to determine what
it needed to do on the current machine [JvRS95].
Such an approach, however, requires that the pro-
grammer explicitly collect the necessary state infor-
mation. In the \who" agent, this state information
is nothing more than an index into the machine list,
but more and more state information is required as
the agent becomes more complex. The agent jump

command is convenient since it automatically cap-
tures this state. The agent jump command does im-
pose a moderate execution overhead on the Tcl in-
terpreter; this overhead can be made much smaller,
however, and can even be reduced to near zero with
the ARA solution [Pei96].

Another example is our \alert" agent that moni-
tors a speci�ed set of remote resources and noti�es
its owner of any change in resource status. Figure
4 shows an \alert" agent that monitors a set of �les
and noti�es the user if the status of a �le changes
signi�cantly (monitored characteristics include the
Unix rwx bits and the �le size). The agent cre-
ates one child agent for each remote �lesystem using
agent submit. Each child agent monitors one or
more �les in its �lesystem and sends a message to
the parent when the status of a �le changes signi�-
cantly. The parent then contacts the owner's \mail"
agent to send an email message.

Since the child agents know which status changes
are \signi�cant", only the status changes that the
user actually wants to see are transmitted across the
network. Without mobile agents, either the remote
machine would have to send back a noti�cation of ev-
ery change (which the application would �lter on the
home machine) or the appropriate monitoring rou-
tines would have to be pre-installed on the remote
machine, limiting the application to the changes that
the remote administrator considers signi�cant. With
mobile agents, the application can monitor for sta-
tus changes according to any desired criteria while
minimizing the ongoing network tra�c.

A hybrid of the two examples is our text-retrieval
agent that searches distributed collections of text
documents. This agent is designed to be launched
from a mobile device. It �rst obtains the query from

C

Bald

CC

Cosmo Lost-ark

C

Temple-doom

C

Tuolomne

C ...

Jump

Jump

Jump

JumpP

Message

 exit

Create

Jump

bald.cs.dartmouth.edu:
rgray ttyp2 Sep 5 21:24 (:0.0)
rgray tty6 Sep 7 07:14

cosmo.dartmouth.edu:
gvc pts/0 Aug 23 10:11

...

}

set machines "bald cosmo lost-ark temple-doom moose muir tenaya tioga tuolomne"

 # get a name from the server

agent_begin

 # submit the child agent that jumps

agent_submit $agent(local-ip) -vars machines -procs who -script {who $machines}

agent_receive code string -blocking
puts $string

 # agent is done

agent_end

 # wait for and output the list of users

 # jump from machine to machine and execute the Unix who command on each machine

proc who machines {

 global agent

 set list ""

 foreach m $machines {

 if {catch "agent_jump" $m"} {
 append list "$m:\n unable to JUMP to this machine"
 else {
 set users [exec who]
 append list "$agent(local-server):\n$users\n\n"
 }
 }

 agent_send $agent(root) $list

 # procedure WHO is the child agent that does the jumping

Figure 3: The \who" agent submits a child agent that jumps from machine to machine and executes the
Unix who command on each machine. The Tcl code is in the middle (the agent array holds the current
location of the agent and is updated automatically as the agent migrates). The path of the agents through
the network is shown at top. A fragment of the output appears at bottom.

(email

message)

Message

(file name and

size change)

Agent

Alert

File

Agent

File

Agent

Mail

Agent

Message

 # status of a file has changed; then send an alert message to the user

Bald

Moose

Create
Create

set machines "bald moose"
set directory "~rgray"

 # get a name from the server

agent_begin

set email_agent "bald rgray_email" # machine and name of email agent

 # submit the "file" agents that watch for changes in file size

 # by asking the user’s email agent to send a message to its owner

while {1} {

}

 agent_receive code string -blocking
 set alert [construct_alert $string]
 agent_send $email_agent {SEND OWNER $alert}

for each m $machines {
 agent_submit $m -vars directory -proc file_watch {file_watch $directory}
}

 # wait for one of the "file" agents to send a message saying that the

Figure 4: The \alert" agent monitors a set of �les and sends an email message to the user when the status of a
�le changes signi�cantly. A simpli�ed version of the \alert" agent appears at bottom; procedure file watch,
which polls the �les at regular intervals using the file stat command, and procedure construct mail,
which constructs a readable mail message, are not shown. The network location of the various agents is
shown at top.

the user and then jumps to a permanently connected
machine somewhere in the network. It then spawns
one child agent for each collection. The child agents
travel to the remote collections, perform the query
using the available retrieval tools, and return to the
permanently connected machine with the query re-
sults. The original agent then discards all dupli-
cates and carries the results back to the mobile de-
vice. This approach allows the agent to carry on its
retrieval work even when the mobile device is dis-
connected and minimizes the total number of bytes
transferred across the low-bandwidth connection be-
tween the mobile device and the network (each docu-
ment entry consists of the title, author and abstract
so it takes only a few duplicates to add up to the
agent's code size). In addition, there is no need to
provide high-level search operations at each collec-
tion; since the child agents move to the collections,
they can perform their search e�ciently even if they
must combine low-level primitives into the desired
search operation.
Agent Tcl has also been used to retrieve three-

dimensional drawings of mechanical parts from dis-
tributed CAD databases [CBC96], to track purchase
orders [CGN96], and in several information-retrieval
applications at external sites.

6 Future directions

The �rst area of future work is to �nish the proposed
architecture. We must add the hierarchical names-
pace, the nonvolatile store, and multiple languages
and transport mechanisms. We are speci�cally inter-
ested in Java, Lisp, electronic mail and HTTP. Work
on Java is in progress. In addition, we must �nish
the resource managers and add the security mech-
anisms that will protect an agent from a malicious
machine and a group of machines from a malicious
agent. Finally, we must extend our existing appli-
cation agents so that they use the available security
information.
The second area of future work is to add support

agents. The resource managers that specify the secu-
rity policies are one type of support agent. An e�ec-
tive mobile-agent system requires several more. We
are in the process of identifying and constructing the
necessary agents. Work on agents that provide direc-
tory services, navigation services, network-sensing
tools, high-level communication services, and graph-
ical construction tools is in progress.
The third area of future work is to experimen-

tally compare the performance of mobile agents
against traditional client/server solutions and to for-

mally characterize when an agent should remain sta-
tionary and when and how far it should migrate.
Such a characterization must consider such things
as network latency and bandwidth, relative machine
speeds, code sizes, and data volumes.

7 Conclusion

Agent Tcl is a secure mobile-agent system that gains
much of its
exibility and simplicity from use of the
high-level scripting language Tcl. Although imple-
mentation work is not complete, Agent Tcl is in ac-
tive use and has allowed the rapid development of
e�cient, distributed applications.

Availability

Agent Tcl version 1.2 will be available at
http://www.cs.dartmouth.edu/~agent near the
end of the summer; we are �nishing the resource
managers, writing the new documentation, improv-
ing the interface between Agent Tcl and PGP, and
reworking the session-key implementation so that it
does not require modi�cations to PGP. Agent Tcl
version 1.1 is available now; version 1.1 uses Tcl 7.4,
provides limited security and is somewhat slower.
Agent Tcl runs on standard Unix platforms.

Acknowledgements

Many thanks to Professor David Kotz for reading
the various incarnations of this paper and provid-
ing helpful criticism; to the anonymous reviewers
for their constructive feedback; to Professor George
Cybenko and Professor Daniela Rus for their sup-
port and encouragement; to Saurab Nog, Ting Cai,
Yunxin Wu, Aditya Bhasin, Kurt Cohen and Scott
Silver for their implementation work; and to the Air
Force and Navy for their gracious �nancial support
(ONR contract N00014-95-1-1204 and AFOSR con-
tract F49620-93-1-0266).

References

[BR] N. S. Borenstein and M. Rose. Safe
Tcl. Available at ftp://ftp.fv.com/

pub/code/other/safe-tcl.tar.Z.

[CBC96] Kurt Cohen, Aditya Bhasin, and George
Cybenko. Pattern recognition of 3D

CAD objects: Towards an electronic yel-
low pages of mechanical parts. Interna-
tional Journal of Intelligent Engineering
Systems, 1996. To appear.

[CGH+95] David Chess, Benjamin Grosof, Colin
Harrison, David Levine, Colin Parris,
and Gene Tsudik. Itinerant agents for
mobile computing. Technical Report
RC 20010, IBM T. J. Watson Research
Center, March 1995. Revised October
17, 1995.

[CGN96] Ting Cai, Peter A. Gloor, and Saurab
Nog. DartFlow: A work
ow manage-
ment system on the web using trans-
portable agents. Technical Report PCS-
TR96-283, Deptartment of Computer
Science, Dartmouth College, May 1996.

[Coe94] Michael D. Coen. SodaBot: A software
agent environment and construction sys-
tem. In Yannis Labrou and Tim Finin,
editors, Proceedings of the CIKM Work-
shop on Intelligent Information Agents,
Third International Conference on In-
formation and Knowledge Management
(CIKM 94), Gaithersburg, Maryland,
December 1994.

[Gra95] Robert S. Gray. Agent Tcl: A trans-
portable agent system. In James May-
�eld and Tim Finin, editors, Proceedings
of the CIKMWorkshop on Intelligent In-
formation Agents, Fourth International
Conference on Information and Knowl-
edge Management (CIKM 95), Balti-
more, Maryland, December 1995.

[Har95] Kenneth E. Harker. TIAS: A Trans-
portable Intelligent Agent System. Tech-
nical Report PCS-TR95-258, Depart-
ment of Computer Science, Dartmouth
College, 1995.

[JvRS95] Dag Johansen, Robbert van Renesse,
and Fred B. Scheidner. Operating sys-
tem support for mobile agents. In Pro-
ceedings of the 5th IEEE Workshop on
Hot Topics in Operating Systems, 1995.

[KK94] Keith Kotay and David Kotz. Trans-
portable agents. In Yannis Labrou and
Tim Finin, editors, Proceedings of the
CIKM Workshop on Intelligent Informa-
tion Agents, Third International Con-
ference on Information and Knowledge

Management (CIKM 94), Gaithersburg,
Maryland, December 1994.

[KPS95] Charlie Kaufman, Radia Perlman, and
Mike Speciner. Network Security: Pri-
vate Communication in a Public World.
Prentice-Hall, New Jersey, 1995.

[LO95] Jacob Y. Levy and John K. Ouster-
hout. Safe Tcl toolkit for electronic meet-
ing places. In Proceedings of the First
USENIX Workshop on Electronic Com-
merce, pages 133{135, July 1995.

[NCK96] Saurab Nog, Sumit Chawla, and David
Kotz. An RPC mechanism for trans-
portable agents. Technical Report PCS-
TR96{280, Deptartment of Computer
Science, Dartmouth College, 1996.

[Ous95] John K. Ousterhout. Scripts and agents:
The new software high ground. Invited
Talk at 1995 Winter USENIX Confer-
ence, January 1995.

[Pei96] Holger Peine. The ARA project.
WWW page http://www.uni-kl.edu/

AG-Nehmer/Ara, Distributed Systems
Group, Department of Computer Sci-
ence, University of Kaiserlautern, 1996.

[Sah94] Adam Sah. TC: An e�cient implemen-
tation of the Tcl language. Master's the-
sis, University of California at Berkeley,
May 1994. Available as technical report
UCB-CSD-94-812.

[Sun94] The Java language: A white paper.
Sun Microsystems White Paper, Sun Mi-
crosystems, 1994.

[TV96] Joseph Tardo and Luis Valente. Mobile
agent security and Telescript. In Proceed-
ings of the 41th International Conference
of the IEEE Computer Society (Comp-
Con '96), February 1996.

[Way95] Peter Wayner. Agents Unleashed: A
public domain look at agent technology.
AP Professional, Chestnut Hill, Mas-
sachusetts, 1995.

[Wel95] Brent B. Welch. Practical Programming
in Tcl and Tk. Prentice-Hall, New Jer-
sey, 1995.

[Whi94] James E. White. Telescript technology:
The foundation for the electronic mar-
ketplace. General Magic White Paper,
General Magic, Inc., 1994.

[Wu95] Yunxin Wu. Advanced algorithms of
information organization and retrieval.
Master's thesis, Thayer School of Engi-
neering, Dartmouth College, 1995.

