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Abstract: Q-Learning iz a direct reinforeement learning algorithm for solving stochastic
eontrod problems with incomplete information. Discretization of the siate and decision
spaces is required when C-Learnimg 15 wsed ro solve stochastic oplimal controd problems
with the siate and decision spaces which both are continua, In this paper it is shown that
under certain compactness and Lipschite continuity assumptions, the optimal solution
obtained with Q-Learning converges almost surely to the optimal selution obiain with the
continuous dynamic programming algonithm as the mazimal discetization grids approach
o Zern, Cappedohs O 0 IEAC

Eeywaords: dvnamic programming, discretization, stochastic conirol, machine leaming,

optimization, convergence analysis, Markov decision problems.

I, INTRODUCTION

Since Watking proposed (-Learning and proved s
comtvergence in 195%, it kas become one of the mast
widely used reinforcement learning  algocithm.
However, at present O-Leaming is mainly applied to
solve Markov decision problems (MDPs) with states
and decisions of finile number. Few empicical or
theoretical results abour Learming 's applications
in MDPs with cootinuous staes and decisions have
been reported. Bul in practice the stales and decisions
of many sochastic controlled systems are ofien
continwous. [Nscretization of the state and decision
spaces 15 required when O)-Learning is uwsed to solve
the problems i these silsations, This paper extends
the results on convergence of discretization procedure
in stochastic dynamic programming (Bertsakas, 1975,
Whing, 1974; Chow and Taisiklis, 1991 1o those in
-Learning.  Under  cestan compaciness  and

Lipschite continuily assurnplioms, it s shown that the
optrmal solwtion obiained with Q-Learning converges
almear surely to the optimal solution obtained with
the continuous dynamic programming algorithm as
the maximal discelization grid approach to zero

2. MAREOV DECTSTON PROBLEMS
AND C-LEARNING

Before O-Learning is introduced, a discrete-ime
Markoyv docesion mwxlel is frsl described: An each

time siage k, the currend siale X, is obscrved and a
decision a, s selected from a finie set of A{_t. :I
After @, is performed, the system goes to a next
state ¥, with some probability P.; ' {ﬂ* :I
Associated with this state transition, an immediate



reward r, is gained. The object of the controller is (o

find an optimal  policy  thal  maximizes

oo b
E{Z}'rq_ﬂ } where ¥ is the discount factor,

With respect to an arbitrary policy &, Q) values are
defined as:

0" (x.a)=Rix.a)+ ¥¥ P, (V" (y)

(i)

Eﬂ:{ﬂ (v.a).

Where
Rlx,a)= E{r{x,u}.l’"

The object in Q-Learning is o estimate the O values
fior am optimal policy when the siate transition
probabilities and reward funchong ase uBknoss a
prian To  swmplify the  nodation, ket

Q" {x,a}: o {.:'.,.:i]. here A" is the optimal
policy,  Learning works as follows: At each rime
step k, the controller ohserves the system stale X,

and sslects an action &, from s‘.[.r*}. After a, is
execyted, the controdber receives an immediate reward
r, while the System stale transfers 1o ¥, . Then

-E,m is adjusted as follows:

Ir (.n’,i.l}z:i:atf_.n'Jt ]

0, (x.a)

= (] = ﬂl‘ :ul- i {-'r"ﬂ}-i- HL [rt + wf—l E}Il‘ }L
W{Iﬂ}* {It o }

O, (ra) =0, (x.a) )
Where X, {'D =, < !} is the leaming rale,
vl'l(:"l)a: Eﬂ"ﬁﬁ ]L""'b:l'

Watking (1989} proved the following comvergencs
thevrem for Q-Learning:

Thearem 12 10 the fidlowing condinoms & 1-A02 are
satisfied, 2, (r,@) in Equation {2) converges to
Q" (x,a )with probability one as k— = ¥ x 4,

Al Eak{x.a}—w Z[-::r,, nall’ <

=l
A2 Bewards ¥y are bownded, e |Ft15'm. Wi a
positive constant,

3. DISCRETIZATION FEOCEDURE

For copvenience, at first consider an  N-stage

stochastic oplimal control problem.

1. Stple transitions are determingd by the following
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copuation :
5= flaamw) k=002 N &

Where stalc x; belongs 10 a state set 5§ which is
defined 1o be a subsel of & melric space bestowed
with a meiric ||x| Decision &, belongs o the
constrained decision set [.l’{,l:* ). Define a decision
s [ = :L:;U{x} which is 2 subset of 8 metric

space bestowed with 2 metric |u|| Stochastic noise
w, helongs 1o the set W and its distribution may
depend on X, and & .

2, The obgect of the controffer i 1o find a0 opdimal
policy to maximize the ldal reward function ;

L, I{ST elx, .y, }}

=7
Where ¥ s the discount factor, #'{*'-'v“k-“'xj 15
the reward &t stage kK that is a real nember and is
bounded by %, k = M-1,...,10.

4}

The continucus dynamic programming algorithm for
solving the above stochastic optimal controf probdem
is given by the following: Wxe Sue U{I}.

Oy lxu)=0 ; (5

!E.{I-H}=§{_§{I.u1h-]
+1"ﬁ+1{f{x*“b“’}]|1'-"}'- (6]

Voulx)= sup 3, (x.u). 7]

where & = N-1...1,00.

Mow the state sei 5 is partitioned into 8 disjoinied
subsets §,,8;.0,8, with § =05, and 2
point x° & 8, is selected from each subser &, | then
a finite agpregated state sed {5 ={t‘,.ri,-r-,.t'"}jx
formed. In the same way [7 is partiioned into p
disiointed  subsets U7 Uy, U, with
= J_IE..? and a point o’ EU is selected
from each subset ‘U,r' to obfain a finite aggregated
decision  set H'-'{x].,uf,"-..up}. Assume that
U(x' ) H 2051 = 12,0, where U[x' Jis the

constrained decision sct at state X . ¢ denotes the
cmply s2t . Then the above contineous dynamic
programming wgorithm (3)-07% can be approximated
with the following discrete dynamdic programming
algorithm,.

Oy (xu)=0, Vxe §,uelU(z); (8



&ﬁ'{jr”‘}:EH{I:EI}, J.'_l-.""qﬂ ; {H]
Vxe GueUlx)n H,

G, (x.u)= Elg (x..w)

+T{"-+=lf'[x1u.w}].::,u}: (10}
wxe 8, ue Ulx)
&ghsﬂjﬂé.[xi.ﬁ,-}. f=lym, (11}
ﬁH{I]“ max EH.{LI.H} ¥xe G 07

wedi ek ¥
ﬁ,.‘{l']:{';;ﬂ{l'},ﬁxE S:J'=l1"',.l¢ K
where &, = arg ml Mlu—u’[..k =Ml

weld

Before the convergence theorem is proved, the
following  Rssumplioms  conceming  ceridin
compaciness anil I,irmq,:hll:-'. L'nni-:ﬁuitj-'urr introdueced.

B.l ; Assume thal the state set 5 . the constrained
decision set L{x) and set U =’L;..;U[x:| are
compact , and thar Yr.x'e 5 and uE[-rl:_J:} .
there exists 1" € {/{x”) which satisfies the following
inecuality:

A ;
Jee—u s Fle-x] (14)

where F {4 a positive constant .

B2 : Assume that Vx,x e S .uu el and

we W, the functions [, g satisfy the following
Lipschitz continuity conditions:

fo.u.w]—f{x'.u'. w|
sEe-xJ+u—-aT)  am

g, w— g (a0’ W)
sMx=x]+fu-ul) 0

where E, .i'-? are positive constants

B.3 : With a given stochastic noise w' s probabilty

MEASUTE SPace [H-",f}" Pl for Wxe § and we U
. defive a measerable and integrable  function

h[k.i_r,u] on the set W which has parameters x
and  w : Now  Define  a  porm
uh{wfx,uMELiﬁ{nfx,u]m- and assume  that
VexelS and wuel | the
p{wlx.u} satisfies  the following Lipschitz
continuity condition:
Iolvise)- plola’)
E'if.ﬂHxh.r"HJ-lu—n’H} (17

funciion
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where {7 is a positive consiant

4. CONVERGENCE ANALYSIS

Theorem 2: If the assumptions B.1-B.3 hold |, then
the Q-value function 3, (x,u) determined by
Equation {3)-{7) satisfies the following inegueality:
Yx,x €8 and w,u’ € U, K=N-1,....10,

0, (xu)-0, 1'.u:j£.i.|:f.r—x]+|]u-—u']|]
(18}
where A, (k=N-1....[0)are positive constanls .

Proof: For k=M-1 |, from Eqeation (5p-(7) @ can be
shiowan theat for each _.lr,,.t:ll-E 95 amd H.H“E ir,

|ﬁ#-r'|:x.u}— Dy lx, u”,‘
g F‘L glx.u, w}p[uix,u]l‘w

= [, 8w w)plot’. v
+ |L glx,u, w‘]ﬂ{ﬂx',u’}fw

- [ 2l w}p‘[wlx',n‘]twi
< suplglx.u wilxe S.ue U, we W}

[ |l plofa’,uiw

i [ g ) gt ) o b

Because of the assumption B.3 , then
[, |plstr.ne)= plif’, e

= ||p|:14i.r,u}— plfwi.r',u"]

£ Ox=x]+ =)

Thus the following inequality holds

E.-'—l {-:-“:]_ Eﬁ'—l -":-“’:1

< Ay (= =7+ - ) (197
where Ay, =B, ,0+M

B, = iup{g{x.u,w}llxe Suel we “-"}
From Equation {7} , then

|i"_'r.--r-l [Ij _l"Tﬁl'—I {IJ}

=

. - i
Elﬁﬂﬂmlijru}_ ﬂ?ﬁ.lgn 1 {I =“1

Because -Uf_x} is o compact sel , there eaisis
vE Ul:x] which  satisfies 'Q-A._, [.r,'u]=
TIHAR E,H (x,u} . According 1o the assumpton B, 1

wal) [:':l

there  also  exists P’EU{_I'} such  that



It follews  froen

< Flx- x|
O ()5 mas Do (') o
F}F-l {I:]" Fﬂ'-r{xr] E |E‘. -1 I[-:'- ""-]_ E.\. -1 .1':.. “'r]
< Ay 1+ F -]

Because of the symmetry of X and x°, similarly
Vo8-V, ()5 AL (14 F -]

Then |IIFJ~' -1 {-"}_ F.'-.'-l{-""':‘
S Ay, [1 + 1?','”1 = 'r'||

(200

Mow consiger the siage k=M-2 and the following
inésquality hoids :

0y (x )= 0y (¥,0")
<[ (s wlplo ke
= [, e wplfe' kv
+ ri_L Voo L (e, w) st oo e
- Vo & )l g
< Ay (o= x|+ =) (21

""I.'L:I'CAN_: - Hl‘l’-.?_'{-]- 'I'J"'T'I"]ﬂ.r.'q |:1-+ .F'.E.
B, =suplg(ruwijre Suel,we W}

+}'5'-]]:"{1"T.-.- 3 {f{meHP eSuell we W}

Thus for k=M-2 the Inequality (18) is proved . [n the
sdme way it can be proved that the Inequalites (18]

hald fior every k= M3 100 Q.ED,

Mow defime

d, —nms-up,t—:‘n, (22
Pl g

d, = max sup max i — 23
sl e 5‘ weli{i e I-IET' ]l"\.l'.l'lF 1| { }

Theorem 3 : If the assumpteons B.1-B.3 hold | the
following inequalities hold for every 1€ 5§ .

we Ux) and k=N-1,..1.0,
8. (x.u)- 8, (x.u) < B,(d, +d,)
where i, (k =0,1,--- N

. E [.:,u}l. ﬁi [x.ujl are  sparately  given
Equatsan (5)-(7)and (33135

(24}

= 1) are positive constants

1

Proaof : Ar siage k=N-1 . for every v r and
HE Ul:.r]f"s fH . it is straightforward 10 show by
(57 [E-{13} that

Equation and
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Oy lxu)=0, (xu) . For every and
we U(x) and xe §,(i=1,+-,n) . then

|E-r—| {I,I!-I!'J— ﬁu.. {I,H1

<A, ld, +d, )=, (d, +d,) (25)

where B, = A, .E" =arg mﬂwuu ~u].
According o Bguation {T) and (120-(13) , for
every x€ S li=1,-,n),

|Er [ {x}_ﬁn-j {:-'-'1

= |max Q,,r_ X0 )—

wlifs] "Tafnﬂ" i3 1

By Inecquality (200 | 1t 15 shown that

[mn B () g 0, (¢ ]

Bix]

= Ay 1+ Fl- 2]

By Ineguality (25] , the following ineguality holds
e B 0ol o

= -EEJE#_I [—Tr..-“]_ ﬁ.‘-‘-] [‘rl.r“}

< By ld, +d,)

Then 1"7.'-'4. {I:I"' Fﬂ-l{'x}

<A, + A, F+ 8, Md +d,)

{26]

Now consider the stage k=N-2 , For each ¥’ € G

and w' e U(x )N H ti=1m j=10, p),
by Beaticn (5)-0T1and (8313} .
iﬁ'«' :L':r1”J}_ E.-.- _?{‘z'iu’l
5T{Aﬁ4+"a'.!'—af+-ﬂ.\'—e Id:+du} (27)

Forevery x€ 8, (i =1,--,n) and we U(x)

Eﬂ -2 {L“ }_ ﬁ.‘r-: [xrﬂl

= ”E‘?‘-‘-'-z ()= 0y, '[-f i, }
+@ ()-8, (e i )
where i, = arg rrﬁ.j-']ln.«j“ —u'] .

By theorem 2, the following inegulity holds
|Er.'-3 I:I,H}— E_H—I {-’-'rj.' ] = Ay (d. +d, :i
By Inequality (271, then

|E!- 2 {fj} }_ ﬁ‘-’—: {:r 'E- ]

syl +AF+8,.)0d, +d,)




Thus for every x€ ¥ and & € L"{.r] .
|Eﬂ-2{-"r“}" é.‘n‘-z {-T-,ﬂ]!

<Ay, ¥y A F B, Md, +4d,)
= ﬂ.’l—]{d.: + ﬂlq } [:H:l
where i, = A, P, '*'i‘*'!'_-.-qf"']"ﬂnq

Thus for k=M-2 the Inequality {24) is proved and
similarly it can be proved for every k| {LE. v

Now consider the infinite-horizon siochastic optirmal
comtrof problents | In fact by replocing the stage index
M in Eguation (330131 with == | an imfinile-horzon
stochastic optimal controd problem and the related
dynamic programming algorithm can be obtained |
According w the convergence theory of stochaslic
dynamac programaming (Bertseks, 1978) | the solution
sequence obtained from the comtinuous  dynamic
programming algorithm expressed by Equation (5)-
(7) converges o the fdlosang opdimal sofulion as
N —paa

E'{x,u}=§_{x,u}=}u£ﬂ[x,u} {29}

Similarly the solution sequence cbtained from the
discrete dynamic programming &l gocithn expressed
by Equation (B)-(L2) comverges to the following

optimal solution as N — ea |
'E‘{LH]:Qu{'t'“]=yj'ﬂ@.t{.x‘“] {30
Theorem 4 ; Il the assumptions B.1-B.3 hold , for
every xe 5 and e U'(x) , the following equation
hiolilks
|d,!i£n'--u|g {'t'“}_ ¢ {I'"j e
whers E‘{x,ulﬂ'l{.r,u] are separately given by
Equation {29} and (307 .

(31}

waf: By Equation (290, then
10" ()= B, (00} = [0 (x, )~ @, (5,0

e ; _ ?,.J:-I-:EH
o)

-y
where R is the bound of the reward function .
Similarly by Equation (307,

0" (v4)~ G, (s} = |G (x,00)~ G, (o)
- I L4
i R
= ¥R = ——
IH:Z*I ﬁ| 1= T
Further by Inegualies (323 , (33) and Theorem 3,
the following inequality hodds o Tk & {01]111"‘}.

0 ()-8 (e < T2 4 B (0, 44,
(34}

< {32)

(A%

i b

where ﬁl{.‘:=ﬂj,~-r,h’—l} are

consianis .

Pt ve

It follows that 'WE > 0 , there exists a 8 > 0 such
thatif {d, +d, )< 8, then

E'{x,u}—é'{x.ﬂfzﬁ

which itmphies that the Equation {313 holds . (LE.IL

(35)

In sectien 3, it is shown that after the discretization
procedure . an MDP with sistes and decisions of
finile nuemther can be formulated | which is associated
with  the original conlinuous  stochastic  optimal
comirgl problem | Siaes X belongs to the finite
apgregated  state  set ﬂ={.\'l,;1,"‘.x"} and
decisions 4 belongs 1o the  comstrainesd)  and
aggregated  decision set Ulx)mH  wit
H= fu' TR --,u"}- If the model of this MDP is
unknown (ie. the distribution of the swchastc noise

W is unknown), OQ-Learning can be used to salve this
MIDF in the following way:

O xul=0, vVreSuellx): @6
ﬂr{I-"}={l—ﬂg:'ﬂe..fx-u}’fﬂih + Ve {jl-';]l
Wre Gue U{x}nﬂ’; (37
E{{L“]: E+{-rl~'r"“r'l
Ve Si=lonue Ulx): (8
vV, (x)= ﬁmﬂﬁﬂg.,{.r,u}. Tre G, (39)
V,,(x}= 1-',_,{:‘}, Yre S i=len . (2}

whese if, = arg Il:lmmfkd —u]f k=123,

Theorem 5: I the following conditions C.1-C.2 arc
satisfied :

C.1 ¢ The original continuous stochastic cptimal
problem sptisfies the assumptions B, 1-B.3 .

C.2 : The conditions A.1-A.2 are satisfied when

O, (x.u) is updated by Equation (37},

then after the above discretiralion procedure |, for
every ¥€ 5 and we U{x) , O, (x.u) converges
W  the optimal  soluion  Q (r,u)
{‘i: +d.]|-}[i andk— = je,

Jm P, (ra)-0 () =0=1 61
(d, +4,

l.h'M!'l:Q‘t [:,ulﬁ'[x.u:}l are separalely given by
Equaticm (36)-(40) and (29} .

as

Proof : If the assumptions B.1-B.3 hold . then
necording 0 theorem 4, the fodlowing conclusion

holds : Ve (0<g <£) , there exists 2 & >0
such that if (d, +d, )< d, . then the Following



inequality holdds for every & § and ne U[.ﬂl .
0 () -0 (vu] < g, (42)

where fj l:.r.u] i given by Bquation (300,

Alfter the discretization procedure |, an MDP with
states and decisions of finile number is forrmelated |
which 15 associated with the origing continwous
stochastic oplimal conwol problem . If the model of
this MD¥F is unknown . Q-Learning can be used 10
sodve this problem . According to theorem 1, if the
conditions A l-A2 are satisfied and k== =@ | then
o, {I,u]' in Equation |37) converges 1o [I.II]
with  probability  one  for  every XEG
andu € Ux)r H . Further by Equation (8)-{13)
and {(X6-(E1 . 6 can be showem that for every
xE 5, I:a' =12 --rr} and L L"I:_:r] A sz,uj
alen converges o ﬂ |,r.1.',r.':| with probability one .
Thus the following corclusion can be oblained : if the
conditions A -A2 are salisfied
Ve, 0ee, <g-£ ) . there exists 2 N, such
that if k>N, | then the following equation holds

for every x€ § and e Ulx),

P“Q,[x.u}_&-{x,qqg_,}ﬂ (43

It fallows from Ieequalives (421 |, (43) that for an
arbibarv e = 0, M=N  and
=8 >0 such tha it (d,+d, )<8 and
k=N | then

{0, ()~ T () < ]

= JF'E[vQJt {xu)— 0 {x,ul <E —E,}

2 P{l0, (5} G () <. =1

Therefore F{JQ* (0 )— {T{x,ﬂ < .-:J"= 1. which
imglics that the Equation (41] holds. (QLE.D.

there axsl

5. DISCUSEI0ONS

This paper 15 maobvaied by the desire o use O
Learning to sodve MDPs with sisle and decision
spaces which boih are continua . Before closing the
paper , it showld be noded that Theorem 5 only holds
for off-live Q-Learping . OfF-line Q-Learning can be
viewed a3 an  off-line  asyoncheonous  dynamic
programaning that is unigue in not reguiring dirsct
gocess o dhe siate-tronsition probabilities of the
decision problem . On-linefreal-tome 0-Learning)

obtains the sequence of quadruples [jx,i YT :I
from the real svsbein while off-line Q-Learning
ohtaing the sequence from the simulated system
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madel. An excellent discussion of these two methods
cian be (ound in {Barto, eral., 19951,

In off-line -Legrning , the immediate reward and
subseguent state for every appregaled state-sction
pairs of the finile sets {7 and M can be determined
from the simolated system model and at each fime
step am action (3 wied on an aggregated state . Then o
negw MDPP can be formuolated on the finite aggregated
state and decision sets and the procedurs of -
learning can be applied o this MDP | In the online

case , at each stage k the guadruple {I_',HJE '.}I.l:"rt}
is ohserved and mapped from the real systcm (the
B with state and decision spaces of coptmun ) and
an action can only be limited o be ired on the
current real sysiem state (but nod the aggregated state)
. Now the original MDPs with continuous state and
decision spaces can be viewed as an cxternal decision
problem and the associared renforosment learning
proftem with apgrepated stales can be viewsd as an
internal decision problem . Obvicusly the melernal
decision problem may be non-Markovian because of

pereepiusl aliasing | e, J{.Ij i "]| may be equal o
every element af the sl

{.’{1,u1:£ S e UI:I}F'I-UI.} . The pereepiusl
aliasing problem ocours because one indernal siate

leg. X ) represents multiple external states { e
Txe & ). Soitis not clear whether the on-line (-

Leaming algorithim can converge wien it is applied
tor this nen-Markoy decision problem .
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