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Abstract. We present a centralized and a distributed algorithm for
scheduling multi-task agents in a distributed system with the objective
of minimizing the overall application completion time. Each agent con-
sists of multiple tasks that can be executed on multiple machines which
correspond to resources. The machine speeds and link transfer rates are
heterogeneous. Our centralized algorithm has an upper bound on the
overall completion time and is used as a module in the distributed algo-
rithm. Extensive simulations show promising results of the algorithms,
especially for scheduling communication-intensive multi-task agents.

1 Introduction

A mobile agent system is a single, unified framework for implementing distributed
applications. Each distributed application can be implemented as a multi-task
agent where there are possible precedence constraints and data transfers among
the constituent tasks. The mobile agent executes by migrating from machine to
machine, looking for data and resources according to each of its tasks.

A key component of any mobile agent system is controlling how the agents
access the resources. Such resources may include CPU time, disk space, database
access, etc. and may be provided by many machines in the network. For example,
consider implementing a multi-step information retrieval as a multi-task mobile
agent. The mobile agent will travel to a remote database to run a query with
user-specified filters. The agent will then summarize locally the relevant results
into a small number of topics or features. Using these features, the mobile agent
will travel to a different database and register a persistent query, returning back
to the user only after a set number of hits has been registered. If this database
is replicated, the agent would have to choose which site to visit. The decision
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depends on the general network traffic conditions, and the machine load and
speed at the site of the database.

Since mobile agents move around in the network, often carrying variable size
of data with them, the performance of an agent can be affected largely by data
transfer delays, especially in heterogeneous networks with diversified network
links. Thus, for scheduling a multi-task agent, there is a tradeoff between the
amount of utilized parallelism in the agent and the amount of data transfer
overhead incurred.

In this paper, we study the problem of scheduling multi-task agents in het-
erogeneous networks with the objective of optimizing the overall application
completion time. Many assumptions used in traditional scheduling algorithms
become unrealistic in this case. In general, scheduling algorithms for a mobile
agent system must work in a heterogeneous environment where (1) the number
of machines is limited; (2) precedence constraints are general; (3) data transfer
delays are general; and (4) task duplication are not allowed. This problem is NP-
Complete. In this paper, each agent consists of multiple tasks with precedence
constraints, hence can be naturally modeled as a DAG (Direct Acyclic Graph).
Both centralized and distributed scheduling algorithms are presented. In the cen-
tralized case, we present the FB and PFB algorithms which in a simplified case
have a provable performance upper bound. In the distributed case, multi-task
agents arrive over time. A distributed scheduling framework is proposed in which
each multi-task agent is assigned its own scheduler which uses the PFB results
as a module. Extensive simulations show promising results of the algorithms,
especially for scheduling communication-intensive multi-task agents.

2 Problem Model

We represent each agent as a distributed application with a set of tasks among
which there are possible precedence constraints and data transfers. This suggests
using a DAG as representation. An instance of the agent (or, more generally the
distributed application) is specified as a DAG G = (T, E), where the set of
nodes T = {T1,T>,--- ,T,} denotes the set of tasks to be executed and the set
of weighted, directed edges E represents both precedence constraints and data
transfers among tasks in 7. The existence of an edge (T}, T;) € E implies T; can
not start execution until 7; finishes and sends its result to T};. In this case, we
use d(T;,T;) to denote the volume of data T; sends to T;. Let Pred(T;) denote
the set of all the immediate predecessors of task 7T;.

Let M = {M;,M>,--- ,M;,} be the set of machines across the network.
We assume each pair of machines are connected to each other and r(M;, My)
represents the data transfer rate between machine M; and M. Since there is
no communication delay for transferring data between two tasks on the same
machine, we define 7(Mj}, M}) to be infinity. The processing time of task T; on
machine My, is denoted by p(T;, M}), which could be set to infinity if T; can not
be executed on Mj.



The objective of the scheduling problem is to find an assignment map M :
{Th,--+ ,Tp} = {My,--- , M} and a set of starting times st(T;),i = 1,--- ,n,
where each task T; is scheduled to be processed on machine M (T;) starting at
time st(T;), such that the precedence constraints are satisfied and the schedule
length C),4, is minimized. Here ()4, is the overall duration of the schedule
defined as

Craz 2 max ft(T;) = max (st(T;) + p(Ti, M(T3))),

1<i<n 1<i<n

where ft(T;) is the finish time of Tj.

Many approximation algorithms and heuristics have been proposed for DAG
scheduling. Many of them assume the data transfer delay is negligible compared
with the task execution time. For those considering data transfer delay, most of
the results are purely empirical [10,1,3], or have various assumptions that do
not hold for realistic applications, such as allowing task duplication to avoid long
data transfer delays and assuming unlimited number of machines [8], restricting
the structure of task graph [7], assuming globally small data transfer delay [6]
or locally small data transfer delay [2].

3 Centralized Scheduling for a Multi-Task Agent

In this section, we propose two scheduling algorithms for a multi-task agent:
the forward-backward (FB) dynamic priority algorithm and the partial forward -
backward (PFB) dynamic priority algorithm. Both FB and PFB are based on a
basic greedy algorithm illustrated in Section 3.1, though they can be combined
with many other scheduling algorithms to enhance their performances as well.

3.1 Basic scheduling

In the basic algorithm, an agent consisting of n tasks in 7 is scheduled in n steps,
one task at a time. Intuitively, if one task can start executing on one machine
at the earliest time and with the fastest speed, we schedule this particular task
on this particular machine. However, it is possible that by waiting a bit the task
can be executed on a faster machine. Therefore, we select the best task-machine
pair at each scheduling step by weighing two parameters: the time and speed at
which one task can be executed. Fig. 1 presents our basic scheduling algorithm.
This algorithm is inspired by the DLS algorithm presented in [10].

Let S; be the system state at scheduling step I, which reflects the partial
schedule information up to step I. S; consists of the subset of T" of all the tasks
which have be scheduled before step [ together with the machines they are as-
signed to and the scheduled starting times. At scheduling step [, task T; is called
ready if it is not scheduled yet and all of its predecessors have been scheduled.
Let the set of all ready tasks be R.

At each scheduling step [, we define the data available time DA(T;, M) of a
ready task T; € R on machine M, as the earliest time when all the data sent to



task T; from its predecessors is available at machine Mj:

d(T;, Ti)

DA(T;, My) 2 r(M(T;), My)

ft(Tj)-l- , T; € R, 1< k<m.

max
T; €Pred(T;)
In other words, DA(T;, M},) reflects how soon all the data passed from T3’s
predecessors can arrive at machine My. The machine available time M A(Mjy,, Sp)

for each machine M}, is the time when all the tasks assigned to M, so far finish
processing. M A(Mjy,, S;) is defined to be 0 if no task has been assigned to M.

Algorithm 1 (Basic Algorithm)
1. Initialization: Let the set of ready tasks R be the set of entry tasks in 7, i.e.
those tasks with no predecessors;
2. At each scheduling step [, do:
For each pair of machine M}, and ready task T;, where T; € R,1 < k < 'm,
compute its dynamic priority DP(T;, My, S;) =

maX1§j§m{P(Tz’: MJ)}

max{DA(T;, My), M A(My, Si)} + ¢ * (1)

Find the task-machine pair (T}+, Mg+) such that DP(Ty, My, S;) =

minTieRJSkSm _DP(TZ, Mj, Sl)

— schedule task T;+ on machine My after the last scheduled task on this
machine.

— Let [ =1+ 1. Update R and S;.

Terminate if R = .

Fig. 1. Basic algorithm

The max term in equation (1) (see Fig. 1) represents the earliest time task T;
can begin execution on machine My if T; is scheduled on Mj. The second term
reflects how fast task 7T; can be executed on machine M. Since the execution
time for one fixed task could be very different on different machines, we use this
term to represent the relative efficiency of different machine-task combinations.
The weight c is used to boost the weight of the second item in order to achieve
a good compromise between these two criteria. The choice of ¢ is currently
experimental and deserves further study. In the case when two task-machine
pairs have identical D P value, ties are broken by choosing the pair in which the
task has a higher bottom-level, where the bottom-level of a task is defined as the
largest sum of execution times along any path from this task to any exit task.

Notice that for each specific pair of ready task and machine , its DP value
is different at different scheduling steps, and is nondecreasing with the increase



of the scheduling steps. Hence algorithm 1 is a dynamic priority scheduling
algorithm.

3.2 FB scheduling

There are situations in which the basic algorithm may generate very unsatisfac-
tory schedules. Fig. 2 shows such an example.

The key structure in the agent’s task DAG that causes performance degra-
dation is the small triangle formed by tasks T5,Ty, Ty, where Ty requires large
volume of data from T and Ty, respectively. This is an important scenario, as it
captures many mobile agent applications which perform information gathering
and retrieval. Due to the greedy nature of the basic algorithm, when T3 and T}
are considered for scheduling, the scheduler only evaluates the quantities of data
transferred to ready tasks T» and T4, no consideration is given to the large data
transfers from them to their common successors Js. So the basic algorithm fails
to assign T» and T4 to the same machine, hence at least one of the two large
data transfer delays must occur. In general, as long as the task graph contains
structures where the data transfered to a single node from its multiple predeces-
sors are all very large compared with task execution times, similar performance
degradation will occur.

Fig. 2. In this scenario we have two identical machines and the time needed to transfer
d units of data between any two machines is d units of time. The weight of each node
denotes the task execution time, and the weight of each edge denotes the volume of data
to be transferred. The subgraph in (b) shows the optimal schedule, while subgraph in (c)
shows the schedule generated by the basic algorithm, which is considerably longer than
the optimal.

To remedy this situation, we can enhance our scheduler by taking advantage
of the forward-backward symmetry of the problem. Specifically, we define the
inverse version of a given multi-task agent scheduling problem G = (T,E) as
G = (T,E), where E = {(T;,T;)|(T;,T;) € E}. The task graph of the inverse
problem is the same as the original one except the direction of each edge, i.e.
the precedence relation, is inverted.

Proposition 1 The inverse problem and the original problem have the same
minimal makespan.



Proof. Proof omitted for space considerations.

In the inverse problem, the data transferred from ready tasks in the original
problem becomes data transferred to ready tasks, thus can be evaluated by the
scheduler. This suggests that we can run Algorithm 1 on the inverse problem,
then reverse the generated schedule (which is a feasible schedule for the inverse
problem) to get a feasible schedule for the original problem. Fig. 4 summarizes
this algorithm which we call Forward Backward (FB) dynamic priority schedul-
ing. For the motivating example in Fig. 2, FB generates the optimal schedule
shown in subgraph (c¢) of Fig. 3.
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Fig. 3. A motivating example for ex-
tension Fig. 4. FB algorithm

3.3 PFB scheduling

Certain substructures in the multi-task agent’s DAG enable the performance
improvement of F'B over the basic algorithm, particularly those “bad” in-tree
structures where the data transferred to a single node from its multiple prede-
cessors are all very large. By reversing the DAG, these in-tree structures will
become “bad” out-trees (the data transferred from a single node to its multiple
successors are all very large) and will be easily handled by the basic algorithm.
However, when the DAG contains both bad in-trees and bad out-trees, the FB
algorithm may fail to generate good schedules, since the forward or backward
scheduling alone cannot handle both types of “bad” subgraphs simultaneously.
Consider the example shown in Fig. 5. Both of the schedules generated by for-
ward and backward scheduling suffer one long data transfer delay (100). The
x-structure contains both the bad in-tree (ABC) and bad out-tree (CDE), which
cause the considerable performance degradation. The bad in-trees and bad out-
trees can also be independent of each other, as is shown in Fig. 6.



One natural solution is to use backward scheduling only on those parts of
the DAG containing bad in-trees and forward scheduling on the remainder of
the DAG, then assemble these two partial schedules together to get the final
one. Partitioning the DAG optimally and efficiently is difficult. Fig. 7 shows
our solution which we call the partial forward backward (PFB) dynamic priority
scheduling algorithm.

For the example shown in Fig. 5, the partial backward scheduling is imple-
mented by first reversing the part of the schedule for C, D and E generated by
forward scheduling to get a partial schedule S; of the inverse DAG, in which C,
D and E are scheduled on the first machine and start at time 2, 1, 0 respectively.
Then tasks A and B are backward scheduled on the same machine as their pre-
decessor C in the reversed DAG. Reversing the schedule for the inverse DAG,
we get an optimal schedule for the original problem.
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Fig.5. A bad case for the FB Fig. 6. Another bad case for the FB
algorithm. algorithm.

Algorithm 3 (PFB algorithm)
1. Run the basic algorithm (Algorithm 1) on original problem G = (T, E), get
schedule S;
2. Let S' = S; For each task T} € T, do:
— Reverse the part of schedule S’ consisting of those tasks starting after
time maxy; cprea(ry) (f1(T3)) in S’ to get a partial schedule Sy, which is
a schedule for those tasks in the inverse DAG.
— Starting from S;, run Algorithm 1 on the inverse DAG for the remaining
tasks to generate a complete schedule Sy for the inverse DAG.
— Reverse Ss to get a schedule S”.
— If Cpnaz(S") < Crga(S7), let 8" = S".
3. Output S".

Fig. 7. PFB algorithm

This scheduling process is demonstrated in Fig. 8.
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Fig. 8. An scheduling example using PFB

3.4 Performance analysis

In this section, we present an upper bound for a simplified version of the basic
algorithm in the computing environment in which machines are identical, but
communication links differ.This is a salient feature of agent systems. In this
situation, the second term in equation (1) becomes identical for all task-machine
pairs, and thus can be ignored in evaluating the dynamic priority. The basic
algorithm becomes the first-start-pair-first algorithm, i.e. the starting times of
successively scheduled tasks are a non-decreasing sequence in time. Our basic
algorithm generates the same schedule as the ETF algorithm in [4]. Our analysis
is inspired by [4], but is much simpler.

We associate with each scheduling step ¢ a time <y, which is the DP value
of the task-machine pair selected at that step, i.e. the starting time of the task
scheduled at step ¢. We assume scheduling step ¢ starts and completes instantly
at time 7,. Thus, saying that a task is ready-to-schedule at scheduling step ¢
implies that a task is ready-to-schedule at time -,.

For scheduling problem G = (T, E), let the schedule generated by the basic
algorithm be S. As defined before, st(B) and ft(B) are the starting and finish
time of task B in schedule S, respectively.

Lemma 1. In schedule S, for every machine M; and any task B such that
DA(B, M;) < st(B), M; is busy during the time interval [DA(B, M;), st(B)].

Proof. Suppose otherwise M; is idle during interval [s, s+ As] C [DA(B, M;), st(B)]
(see Fig. 9). Let C be the first task scheduled on M; after s + As, then C # B
(otherwise the algorithm will schedule B at a time no later than s). Furthermore,
task C' must be scheduled before B, for if B is scheduled at a step p when C' has
not be scheduled, then M A(M;,S,) < s, which together with DA(B,M;) < s
implies DP(B,M;, Sp)< s < st(B), a contradiction.

M| ide |

1 7
DA(B, M) S Shs S

Fig. 9. Proof of Lemma 1

At the scheduling step ¢ when C' is being scheduled, B must be ready since
it has not been scheduled and its data has been available since DA(B, M;) <



s < st(C) = 74. Moreover, M A(M;, S;) < s, for M; has been idle at least since
time s. So DP(B, M;,S;) = max{DA(B,M;), MA(M;,S;)} < s < st(C) =
DP(C, M;,S,). Therefore B instead of C should be scheduled at this step, con-
tradiction.

Let By be the last task finishing in schedule S. Choose any chain L = Bg —
- = By — Bjp in G starting from some entry task Bx and ending at Bj.
Denote the length of the schedule S as Ciuqz, and the optimal schedule length

ignoring data transfer delays as C,, .

Theorem 1. For scheduling problems with identical machines and general com-
munication links,

1
< (2-— * 2
Cmaz = ( m) *Cma,z 7 ( )
where
K-1 1 m
D= [EZ A(Bi, Mj) — ft(Bit1)|-
=1 :

Proof. Define t;4, to be the sum of idle time on all machines before time C, 44
in schedule S. Similarly tpysy is the sum of busy time on all machines before time
Cmaz- Hence tigre + tyusy = MCqq. Since Bi has no predecessors, all machines
must be busy before time st(By), so

K
tidie < ZP )+
i=1
Since C*

ez 18 no smaller than the sum of execution time along any chain, and by
Lemma 1, every machine M; must be busy during the time interval [D A(B;, M;),
st(By)] if DA(Bi,Mj)<St(Bi) fori=1,...,K, we have

K-1

S (st(By) = fi(Bisn)-

i=1 j=1

K-1

tiate < (m —=1)Crgq + Y D [DA(Bi, Mj) — ft(Bjs1)] (3)

=1 j=1

Therefore, Crnaz = = (tousy+tiae) < Cp L tidqie, which together with (3)

max
completes the proof of Theorem 1.

Among all the chains satisfying the conditions preceding Theorem 1, we can
define a particular one L as follows: Let B; = B;. Fixing the starting times
and the associated machines of all tasks in Pred(B;) as in schedule S, choose i%
such that DA(]§1, M;s) = maxi<i<m DA(]§1, M;), and let B, be one immediate

predecessor of B; whose data for B; arrives last at machine M;;. So
fa, +d(Ba, B1)[v(M(B:), Ms;) = DA(By, M;;).

Inductively define B;,i = 3,--- , K in this way, until reaching an entry task B -
For this particular chain L, Theorem 1 becomes:



Corollary 1. In equation (2), D can be written as

—

K-1 K-
D= Z+17 )
i1 BH—I) M;» ) o i—1 Umin

where Vpin 18 the speed of the slowest link.

3.5 Experimental results

In this section, we present simulation results for our two multi-task agent schedul-
ing algorithms and compare their performances with the DLS algorithm of [10].
DLS is one of the few task scheduling algorithms that supports general compu-
tation and data transfer delay in heterogeneous domains.

Our simulations are run on two sets of task graphs: random D AGs with pre-
determined optimal schedules proposed in [5] and random DAGs with unknown
optimal schedules. We define ACCR (Average Communication to Computation
Ratio) of a distributed application as the average communication (data trans-
fer) delay divided by average computation time of tasks. The parameter ¢ in
equation (1) is set to be 10.

Fig. 10 shows the comparison result of running simulations on random D AG's
with predetermined optimal schedule length in homogeneous environment. Both
of the FFB and PF'B algorithms generate considerably better schedules than
DLS, especially for communication-intensive applications.

Average Schedule Length
N Wb
o & o
o O o©

"
Q
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ACCR: Average Communication to Computation Ratio

Fig. 10. Random DAG with pre-determined optimal schedule length 100.0. The z-azis
represents the ACCR; the y-azis represents the average schedule length (averaged over
60 simulation runs) color-coded for each of the three algorithms. Seven different values
of ACCR were selected: 0.1, 0.25, 0.5, 1, 2, 4, 6, 8, 10, to show the relative performance
over a range of distributed applications from computation-intensive ones (when ACCR
is small) to communication-intensive ones (when ACCR is large).

Fig. 11 gives the average speedup when running simulations on random
DAGSs with unknown optimal schedules in heterogeneous environments. Here
the speedup of algorithm A over algorithm B means the ratio of the schedule
length generated by algorithm B to that generated by algorithm A. One hundred
random D AGs were generated as test bed: the number of tasks in each DAG is
of uniform distribution over [20,100], the average task execution times, average



data transfer delays, machine speeds and link speeds are uniformly distributed
over different ranges. The results shown in the graphs are an average over 100
separate simulations.
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Fig.11. (a): Average speedup over DLS with respect to machine heterogeneity. The
z-azis shows the range of machine speeds in the environment. The y-axis is the average
speedup in the schedule length. Each bar is a value averaged over 100 simulations.
(b): Average speedup with respect to ACCR. The z-axis is the ACCR and the y-axis
18 the average speedup in the schedule length. Each bar is a value averaged over 100
simulations.

Fig. 11(a) shows the average speedup of our two algorithms over DLS with
respect to machine heterogeneity, when the average task execution time, average
data transfer delays were uniformly distributed over [1.0,9.0] and [0.0,40.0],
respectively. The speed of each machine is of uniform distribution over the range
[;la * p;, B % p;], i.e. a large value of § indicates a high heterogeneity of machine
speeds. Seven different values of § ranging from 1.25 to 20 are selected to indicate
different level of heterogeneity of machine speeds. The link rates vary uniformly
over [0.5% (average rate), 1.5 (average rate)]. Our algorithms outperforms DLS,
and this performance improvement gets more evident as the range in which the
machine speeds vary increases. We also observe a significant improvement of
PFB over F'B.

Fig. 11(b) shows the speedup of our algorithms over DLS with respect to
ACCR, where the average task execution time, link rates and machine speeds
are of uniform distribution over [1.0,9.0], [0.5% average link rate, 2.0% average
link rate] and [0.2% average machine speed, 5.0% average machine speed], re-
spectively. When ACCR < 1, DLS slightly outperforms our algorithms, but
when ACCR > 1, our algorithms outperform DLS considerably. A significant
improvement of PF B over F'B is also observed.

4 Distributed scheduling for many multi-task systems

In a mobile agent system, multi-task agents arrive over time. In this section we
use the ideas from scheduling a single multi-task agent to schedule many multi-
task mobile agents in a distributed system. We propose a distributed scheduling
framework by assigning to each such agent its own scheduler (resource manager),
which uses Algorithm 4 for scheduling.



Algorithm 4 (Distributed Algorithm)
1. Run Algorithm 3 on the multi-task agent to get its PFB schedule Sy.
2. Initialize the set of ready tasks R as the set of entry tasks in 7T, i.e. those
tasks with no predecessors.
3. While not all tasks of the agent have been scheduled, do:
— Update R;
— While R # 0, do:

(a) For each pair of task T; and machine My, where T; € R, 1 < k < m,
compute its dynamic priority from equation 1.

(b) Find the task-machine pair (Tj+, My«) such that DP (T, M) =
ming; e g,1<k<m DP(Ti, Mj).

(c) If the Average Communication-to-Computation Ratio of the DAG
is larger than A, do: for each already scheduled task A that (1) has
common successors with T;; (2) is assigned on the same machine as
T;» in Sp; (3) the minimum of the data transfer delays from A and
T+ to their common successor is « times larger than the maximum
of the standard execution times of A and T+, set M+ as the machine
that A is assigned to.

(d) Schedule task T;» on machine Mpg-.

Fig. 12. Distributed scheduling

4.1 Model

We assume that each agent has its own scheduler, called the agent scheduler. We
assume there is no communications between different agent schedulers, thus each
agent scheduler works independently without cooperation. An agent scheduler
takes a snapshot of the system state and makes scheduling decisions for the
agent’s tasks dynamically. Since multiple agents execute in the system, the actual
starting time of a task may be different from the one computed by the agent
scheduler. Thus, the notion of scheduling here is slightly different from what we
have used in centralized scheduling, in that an agent scheduler does not specify
the absolute starting time of each task.

For incoming agent tasks, each machine has two specific FIFO queues: a
waiting queue and a ready queue, both of which are manipulated by a local “co-
ordinator” agent residing on this machine. An incoming agent task is allocated
to the ready queue or the waiting queue depending on whether its input data is
available on this machine or not. For those tasks in the waiting queue, they can
be reallocated to the ready queue by the coordinator agent at a later time when
all its input data has arrived on this machine. Thus the tasks in the ready queue
can start running instantly once the machine becomes idle, while the waiting
queue consists of those tasks waiting for the arrivals of their input data. The
coordinator agent is also responsible for notifying each agent scheduler when one



of its tasks starts or finishes execution. By implementing these two queues on
each machine, the tasks which are scheduled early but whose input data arrive
very late will not block other tasks which are scheduled later but whose input
data come earlier.

4.2 Distributed Scheduling

In a distributed mobile agent system, different multi-task agents arrive over
time. Thus one factor that can affect the decisions of a scheduler is the time-
varying machine states resulting from the arrival of tasks from other agents.
Agent schedulers should dynamically, rather than statically, schedule their tasks
to take into account the time-varying system states affected by the incoming
tasks of other agents over time. An important issue in dynamic scheduling is
timing, i.e. when to schedule the tasks of an agent. The scheduling time of a
task can be as early as its agent’s arrival time or as late as the time when the
task is ready to run. If we schedule a task early, a large part of the scheduling
and task submission overhead can be overlapped with the task computations and
communications of the agent, but the state information can be stale. So there is
a tradeoff between scheduling and task submission overhead, and the accuracy
of the state information used by the scheduler. In our algorithm, we choose the
scheduling time of a task to be the latest time among the starting times of all its
predecessors, i.e. the earliest time when the data available times of this task on
all machines can be calculated precisely. A task is ready to be scheduled when
all its predecessors have started executions.

The centralized algorithms we developed in the previous sections can be ex-
tended to the distributed case. Algorithm 1 is adaptive, hence can be easily
adopted by each agent scheduler. However, it can generate very unsatisfactory
schedules when there are bad in-trees and bad out-trees in the multi-task agent
DAG. On the other hand, the PFB algorithm can overcome this difficulty and
improve the performance considerably, but its extension to the distributed en-
vironment is not straightforward. Therefore, it is natural to use the scheduling
results of PFB algorithm as hints for the agent schedulers which utilize Algo-
rithm 1 as the main scheduling scheme. The details of the overall distributed
algorithm used by each agent scheduler are illustrated in Fig. 12, where A\ and
a are the threshold to determine whether the hints should be accepted or not,
and the notations are the same as in Section 3. A and a are usually above 1,
since, from our previous simulations, the improvement by using PF B is signifi-
cant only for communication intensive applications. The actual values of A and
a can be determined experimentally. This distributed extension only covers the
bad in-tree structures in the DAG. which is of course not complete. However,
in our previous simulations, we have observed that this is the main reason of
performance degradation in scheduling problems with communication delays.



4.3 Simulation Results

Simulations are carried out in a heterogeneous computing environment, where
the total number of machines is 16 and the machine speeds and link rates are
generated randomly. There are 32 multi-task agents arriving over time, where
the agent arrivals are given by a Poisson process. Each agent consists of 64 tasks,
whose structure is generated randomly under the constraint that the maximum
number of edges emitting from one task is 16.

B x B B 10 12 14
ACCR (Average Communication—to-Computation Ratio)

Fig. 13. The performance of scheduling multi-task multi agent systems. The z-azis is
the ACCR. The y-azis is the speedup in the sum of the application turnaround time.
The four curves correspond to different average agent arrival intervals.

In Fig. 13, we simulate our distributed scheduling algorithm to compare the
performances of Algorithm 4 using PFB hints versus not using PFB hints. We
choose the threshold A and a to be 4 and 2 respectively. The results of each
case are obtained by taking the average of five simulation runs. We observe
that, by using PFB hints, the distributed algorithm has significant performance
improvement when the ACCR is large, i.e. when scheduling multi-agent systems
that are communication intensive.

The distributed algorithm assumes that the scheduler has full knowledge of
the multi-task agent to be scheduled and the global information of the network,
which is not realistic in most real systems. In many cases we are only able to
feed the scheduler with the estimated values of parameters. So it is important
to evaluate how tolerant the distributed scheduling algorithm is to the estima-
tion errors of parameters. Three parameters are chosen to be tested individually:
the standard task execution time, the size of data transferred among tasks, and
the transfer rate of communication links. For each of them, three estimation
error ranges are simulated, where the estimated parameters are uniformly dis-
tributed within +10%, £25%, £50% of the correct values respectively. We define
the degradation ratio as the ratio of the sum of the total application turnaround
times using correct parameters to that using estimated parameters. We use this
ratio to indicate the tolerance of our algorithm to parameter variations, where
a degradation ratio far below 1.0 means that the algorithm is very sensitive to
parameter variations. We evaluate the mean and the standard deviation of the
degradation ratio under different average communication-to-computation ratios
by averaging over twenty simulation runs. Fig. 14 and Fig. 15 show the simula-
tion results. The average application arrival interval is 100. We observe that the



algorithm is more sensitive to the data sizes and link rates than to the standard
task execution times. The overall degradations are acceptable, where the worst-
case performance degradation is 20%. When ACCR is large, we observe large
standard deviations.

4.4 An Experiment

We are currently implementing our distributed mobile agent scheduling algo-
rithms in the context of a multi-step information retrieval which is a component
of the MURLI application described in [9]. The scheduling algorithm has already
been implemented on top of the D’Agents mobile agent system. The main com-
ponents of the implementation consist of the scheduling modules used in our
simulations and modules used to estimate network delay, machine load, and ma-
chine speed for each of the machines in the system. We hope to collect data
consistent with our simulations for multi-step information retrievals in the near
future.

5 Conclusions

We presented a solution to distributed multi-task multi-agent scheduling for mo-
bile agent environments with heterogeneous hosts and communication delays. We
approached this problem by first developing a centralized algorithm for schedul-
ing a single multi-task agent. An upper bound is provided for this algorithm
in a simplified case when all the machines in the system are identical but the
communication delays vary. We then extend this algorithm for the distributed
multi-agent problem, by associating a scheduler with each agent. Extensive sim-
ulation results show that the proposed algorithm is promising, especially for the
distributed scheduling of communication-intensive multi-task agents.

@) (b) (©)

| W Error Range:+-10%
[ Error Range: +-25%
[ Error Range: +-50%

»-\
w

Bl Error Ranger+-10%
1.of EEH Error Range: +-25%
[ Error Range: +-50%

Wl Error Range:+-10%
1.0} EE Error Range: +-25%
[ Error Range: +-50%

I
i

%
N
N

Mean of Ratio
) e
© N

Mean of Ratio
o
© _~

Mean of Ratio
°
© v i

o

3
o
@

o o
o 3

06 102505 1

6 01025051 2 4 8 16 102505 1 2 4 8 16 2 4 8 16
ACCR: Average Communication to Computation Ratio ACCR: Average Communication to Computation Ratio ACCR: Average Communication to Computation Ratio

Fig. 14. The z-azis represents the ACCR; the y-axis represents the mean of the degra-
dation ratio. Tested parameter: (a)Standard task execution time; (b) Size of data trans-
ferred among tasks; (c) Transfer rates of communication links.
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